Role of the AtClC genes in regulation of root elongation in Arabidopsis


1 Department of Horticulture and Plant Breeding,Sari Agricultural Sciences and Natural Resources University, Iran. P. O. Box: 578.

2 Department of Plant Biology, University of Groningen, P. O. Box: 9750 AA Haren, The Netherlands.


The protein family of anion channel (ClC) constitute a family of transmembrane trnsporters that either function as anion channel or as H+/anion exchanger. The expression of three genes of AtClCa, AtClCb and AtClCd in the model plant Arabidopsis thaliana were silenced by a T-DNA insertion . When the pH of the medium was slightly acidic the length of the primary root of plants with a disrupted AtClCa and AtClCd gene was reduced compared to the wild type and the plant with a disrupted AtClCb gene. The proton fluxes and pH were measured along the surface of the root at different positions, from root cap, through the transition zone, and up to the fast elongation zone, and at different pHs of the medium. A high proton influx was found in the apical part of the transition zone. Lower influxes or even small effluxes were found in the basal part of the elongation zone. At pH 6.2 the influx of protons in the apical part of the transition zone in the Atclca and Atclcd mutants was significantly lower than in wildtype and the Atclcb mutant. This will suggest a model for the interaction between endomembrane anion/H+ antiporters, plasma membrane proton fluxes and cell expansion in roots of Arabidopsis.


Benfey N. B., Linstead P. J., Roberts K., Schiefelbein J. W., Hauser M. T., and Aeschbacher R. A. (1993). Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development, 119: 57-70.
Buntemeyer K., Luthen H., and Bottger M. (1998). Auxin-induced changes in cell wall extensibility of maize roots. Planta, 204: 515-519.
Carpita N., and Gibeaut D. M. (1993). structural model of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3: 1-30.
Cosgrove D. J. (2000). Loosening of plant cell walls by expansins. Nature, 407: 321-326.
De Angeli A., Monachello D., Ephritikhine G., Frachisse, J. M., Thomine S., Gambale F., and Barbier-Brygoo H. (2006). The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature, 442: 939-942.
De Angeli A., Thomine S., Frachisse J. M., Ephritikhine G., Gambale F., and Barbier-Brygoo H. (2007). Anion channels and transporters in plant cell membranes. FEBS Letters, 581: 2367-2374.
De Cnodder T., Verbelen J. P., and Vissenberg K. (2006). The control of cell size and rate of elongation in the Arabidopsis root. Plant Cell Monogr, 5: 249-269.
Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., and Scheres B. (1993). Cellular organization of the Arabidopsis thaliana root. Development, 119: 71-84.
Edwards K. L., and Scott T. K. (1974). Rapid growth responses of corn root segments: Effect of pH on elongation. Planta, 119: 27-37.
Elzenga J. T. M., and Van Volkenburgh E. (1997). Characterization of a light-controlled anion channel in the plasma membrane of mesophyll cells of Pea. Plant Physiology, 113: 1419-1426.
Fan L., and Neumann P. M. (2004). The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH. Plant Physiology, 135: 2291-2300.
Fecht-Bartenbach J. V. D., Bogner M., Krebs M., Stierhof Y. D., Schumacher K., and Ludewig U. (2007). Function of the anion transporter AtCLC-d in the trans-Golgi network. The Plant Journal, 50: 466-474
Fujita H., and Syono K. (1996). Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana. Plant Cell Physiology, 37: 1094-1101.
 Hauser M. T., Morikami A., and Benfey P. N. (1995). Conditional root expansion mutants of Arabidopsis. Development, 121: 1237-1252.
Jentsch T. J., Maritzen T., and Zdebik A. A. (2005). Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. The Journal of Clinical Investigation Revenue, 115:2039-2046. 
Jentsch T. J., Stein V., Weinreich F., and Zdebik A. A. (2002). Molecular structre and physiological function of chloride channel. Plant Physiology, 82: 503-568.
Johannes E., Crofts A., and Sanders D. (1998). Control of Cl- efflux in Chara coralline by cytosolic pH, free Ca2+, and phosphorylation indicates a role of plasma membrane anion channels in cytosolic pH regulation. Plant Physiology, 118: 173-181.
Kiegle E., Gilliham M., Haseloff J., and Tester M. (2000). Hyperpolarisation-activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant Journal, 21: 225-229.
Lanfermeijer F. C., Staal M., Malinowski R., Stratmann J. W., Elzenga J. T. M. (2008). Micro-Electrode Flux Estimation Confirms that the Solanum pimpinellifolium cu3 Mutant Still Responds to Systemin. Plant Physiolog, 146: 129-139.
Le J., Vandenbussche F., Van Der Straeten D., and Verbelen J. P. (2001). In the early response of Arabidopsis root to ethylene, cell elongation is up and down regulated and uncoupled from differentiation. Plant Physiology, 125: 519-522.
Lv Q. D., Tang R. J., Liu H., Gao X. S., Li Y. Z., Zheng H. Q., and Zhang H. X. (2009). Cloning and molecular analyses of the Arabidopsis thaliana chloride channel gene family. Plant Science, 176: 650-661.
Lynch J. (1995). Root architecture and plant productivity. Plant Physiology, 109: 7-13
Maathuis F. J., and Sanders D. (1994). Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Cell Biology, 91: 9272-9276.
McQueen-Mason S., Durachko D. M., and Cosgrove D. J. (1992). Two endogenous proteins that induce cell wall extension in plants. Plant Cell, 4: 1425-1433.
Miller C. (2006). ClC chloride channels viewed through a transporter lens. Nature, 440: 484-488.
Newman I. A. (2001). Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterise transporter function. Plant, Cell & & Environment, 24: 1-14.
Peters W. S., and Felle H. H. (1999). The correlation of profiles of surface pH and elongation growth in maize roots. Plant Physiology, 121: 905-912.
Pilet P. E., Versel J. M., and Mayor G. (1983). Growth distribution and surface pH patterns along the maize roots. Planta, 158: 398-402.
Rayle D., and Cleland R. E. (1970). Enhancement of wall lo-loosening and elongation by acid solution. Plant Physiology, 46: 250-253.
Rayle D., and Cleland R. E. (1992). The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiology, 99: 1271-1274.
Scheel C., Zdebik A. A., Lourdel S., and Jentsch T. J. (2005). Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature, 436: 424-427.
Scherese B., Benfey P., and Dolan L. (2002). Root development. The Arabidopsis book. 1-18.
Schiefelbein J. W., Masucci J. D., Wang H. (1997). Building a root: the control of patterning and morphogenesis during root development. Plant Cell, 9: 1089-1098.
Shabala S. N., and Newman I.A. (1997). Proton and calcium flux oscillations in the elongation region correlate with root nutation. Physiology Plant, 100: 917-926
Showalter A. M. (1993). Structure and function of plant cell wall proteins. Plant Cell, 5: 9-23.
Sivaguru M., Fujiwara T., Samaj J., Baluska F., Yang Z., Osawa H., Maeda T., MoriT., Volkmann D., and Matsumoto H. (2000). Aluminium-induced 1-3-β-D-glcan inhibits cell to cell trafficking of molecules through plasmodesmata. A new mechanism of aluminium toxicity in plants. Plant Physiology, 124: 991-1005.
Swarup R., Paula P. P., Hagenbeek D., Der Straeten D. V., B-eemster G. T. S., Sandberg G., Bhalerao R., Ljung K., Malcolm J., and Bennett M. J. (2007). Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. The Plant Cell, 19: 2186-2196.
Tanner W., and Caspari. (1996). Membrane transport carriers. Annu Rev. Plant physiology: Plant Molecular Biology, 47: 595-627.
Verbelen J. P., Vissenberg K., Kerstens S., and Le J. (2001). Cell expansion in the epidermis: microtubules, cellulose orientation and wall loosening enzymes. Journal of Plant Physiology, 158: 537-543.
Vreeburg R. A. M., Benschop J. J., Peeters A. J., Colmer T. D., Ammerlaan A. H., Staal M., Elzenga J. T. M., Staals R. H. J., Darley C. P., McQueen-Mason S. J., and Voesenek L. A. (2005). Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris. Plant Journal, 43: 597–610.