Callus induction, frond regeneration, and genetic transformation of the aquatic plant Lemna minor using Agrobacterium tumefaciens

Document Type : Research paper

Authors

National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.

Abstract

Molecular farming involves the large-scale cultivation of plants to produce recombinant proteins for diverse biotechnological applications, including biopharmaceuticals, veterinary products, research tools, and dietary supplements. Members of the Lemnaceae family, small aquatic plants typically found in swamps and lakes, have garnered attention for molecular farming due to their rapid growth, vegetative propagation, and high protein content. In this study, the Iranian ecotype of Lemna minor plants was collected from Guilan Province in northern Iran. To induce callus formation, five different media—Murashige and Skoog (MS), 1/2MS, B5, Schenk and Hildebrandt (SH), and Hoagland —were evaluated with various combinations of hormones and sucrose concentrations. The impact of acetosyringone in the co-cultivation medium on transformation efficiency was also examined. The findings revealed that Hoagland and standard MS basal media, combined with 12 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D), 4.8 mg/L 6-Benzylaminopurine (BAP), and 2% sucrose, significantly enhanced callus induction. For frond regeneration, Hoagland medium supplemented with 2% sucrose, 1.1 mg/L kinetin, 4.5 mg/L indole-3-acetic acid (IAA), and 1 mg/L thidiazuron (TDZ), 4 mg/L IAA showed the highest performance. Additionally, the optimal transformation efficiency was achieved using 200 µM acetosyringone. This study provides an efficient and reproducible protocol for callus induction and frond regeneration in L. minor, offering valuable insights for molecular farming and recombinant protein production.

Keywords


Abdelwahed M. (2016). Efficient callus induction and plant regeneration of Lemna gibba strain 5503. IX International Symposium on In Vitro Culture and Horticultural Breeding 1187. DOI: https://doi.org/10.17660/ActaHortic.2017.1187.9.
Afolabi-Balogun N., Inuwa H., Ishiyaku M., Bakare-Odunola M., Nok A., and Adebola P. (2014). Effect of acetosyringone on Agrobacterium-mediated transformation of cotton. ARPN Journal of Agricultural and Biological Science, 9(8): 284-286.
Aloni R., Aloni E., Langhans M., and Ullrich C. (2006). Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance, and root gravitropism. Annals of Botany, 97(5): 883-893.
Appenroth K.-J., Sree K. S., Bog M., Ecker J., et al. (2018). Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Frontiers in Chemistry, 6: 483.
Arzani A., and Mirodjagh S.-S. (1999). Response of durum wheat cultivars to immature embryo culture, callus induction, and in vitro salt stress. Plant Cell, Tissue and Organ Culture, 58: 67-72.
Bertran K., Thomas C., Guo X., Bublot M., et al. (2015). Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 highly pathogenic avian influenza virus challenge in immunized chickens. Vaccine, 33(30): 3456-3462.
Caswell K. L., Leung N. L., and Chibbar R. N. (2000). An efficient method for in vitro regeneration from immature inflorescence explants of Canadian wheat cultivars. Plant Cell, Tissue and Organ Culture, 60: 69-73.
Chang W.-C., and Chiu P.-L. (1976). Induction of callus from fronds of duckweed (Lemna gibba L.). Botanical Bulletin of Academia Sinica, 17: 106-109.
Chang W.-C., and Chiu P.-L. (1978). Regeneration of Lemna gibba G3 through callus culture. Zeitschrift für Pflanzenphysiologie, 89(1): 91-94.
Chhabra G., Chaudhary D., Sainger M., and Jaiwal P. K. (2011). Genetic transformation of the Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiology and Molecular Biology of Plants, 17: 129-136.
Ćosić T., Motyka V., Savić J., Raspor M., Marković M., Dobrev P. I., and Ninković S. (2021). Sucrose interferes with endogenous cytokinin homeostasis and expression of organogenesis-related genes during de novo shoot organogenesis in kohlrabi. Scientific Reports, 11(1): 6494.
Cox K. M., Sterling J. D., Regan J. T., Gasdaska J. R., et al. (2006). Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nature Biotechnology, 24(12): 1591-1597.
de Beukelaar M. F., Zeinstra G. G., Mes J. J., and Fischer A. R. (2019). Duckweed as human food: the influence of meal context and information on duckweed acceptability of Dutch consumers. Food Quality and Preference, 71: 76-86.
DeKock P., Cheshire M., Mundie C., and Inkson R. (1979). The effect of galactose on the growth of Lemna. New Phytologist, 82(3): 679-685.
Delporte F., Mostade O., and Jacquemin J. (2001). Plant regeneration through callus initiation from thin mature embryo fragments of wheat. Plant Cell, Tissue and Organ Culture, 67: 73-80.
Di Pauli V., Fontana P. D., Lewi D. M., Felipe A., and Erazzú L. E. (2021). Optimized somatic embryogenesis and plant regeneration in elite Argentinian sugarcane (Saccharum spp.) cultivars. Journal of Genetic Engineering and Biotechnology, 19(1): 171.
Diwan F. (2023). Duckweed and its broad-spectrum applications. Climate Survival Solutions, Inc., and Climate Survival Solutions Pvt. Ltd, 1-18.
Frick H. (1991). Callogenesis and carbohydrate utilization in Lemna minor. Journal of Plant Physiology, 137(4): 397-401.
Guo L., Fang Y., Jin Y., He K., and Zhao H. (2023). High starch duckweed biomass production and its highly efficient conversion to bioethanol. Environmental Technology and Innovation, 32: 103296.
Hoagland D. R., and Arnon D. I. (1950). The water-culture method for growing plants without soil. 2nd Ed., California Agricultural Experiment Station, Circular 347, pp. 32.
Hobom B. (1980). Gene surgery: on the threshold of synthetic biology. Medizinische Klinik, 75(24): 834-841.
Hoque M. E., and Mansfield J. W. (2004). Effect of genotype and explant age on callus induction and subsequent plant regeneration from root-derived callus of indica rice genotypes. Plant Cell, Tissue and Organ Culture, 78: 217-223.
Horacio P., and Martinez-Noel G. (2013). Sucrose signaling in plants: a world yet to be explored. Plant Signaling and Behavior, 8(3): e23316.
Huang M., Fu L., Sun X., Di R., and Zhang J. (2016). Rapid and highly efficient callus induction and plant regeneration in starch-rich duckweed strains of Landoltia punctata. Acta Physiologiae Plantarum, 38: 1-13.
Huang M., Ma X., Zhong Y., Hu Q., Fu M., and Han Y. (2018). Callus induction and plant regeneration of Spirodela polyrhiza. Plant Cell, Tissue and Organ Culture, 135: 445-453.
Ikeuchi M., Iwase A., Rymen B., Lambolez A., et al. (2017). Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiology, 175(3): 1158-1174.
Islam K. (2002). Feasibility of duckweed as poultry feed: a review. Indian Journal of Animal Sciences, 72(6): 486-491.
Jefferson R. A., Kavanagh T. A., and Bevan M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6(13): 3901-3907.
Khvatkov P., Chernobrovkina M., Okuneva A., and Dolgov S. (2019). Creation of culture media for efficient duckweed micropropagation (Wolffia arrhiza and Lemna minor) using artificial mathematical optimization models. Plant Cell, Tissue and Organ Culture, 136(1): 85-100.
Khvatkov P., Chernobrovkina M., Okuneva A., Shvedova A., Chaban I., and Dolgov S. (2015). Callus induction and regeneration in Wolffia arrhiza (L.) Horkel ex Wimm. Plant Cell, Tissue and Organ Culture, 120: 263-273.
Ko S.-M., Sun H.-J., Oh M. J., Song I.-J., et al. (2011). Expression of the protective antigen for PEDV in transgenic duckweed, Lemna minor. Horticulture, Environment, and Biotechnology, 52(5): 511-515.
Kozlov O., Mitiouchkina T. Y., Tarasenko I., Shaloiko L., Firsov A., and Dolgov S. (2019). Agrobacterium-mediated transformation of Lemna minor L. with hirudin and beta-glucuronidase genes. Applied Biochemistry and Microbiology, 55(8): 805-815.
Landolt E., and Kandeler R. (1987). Biosystematic investigations in the family of duckweeds (Lemnaceae), Vol. 4: The family of Lemnaceae—a monographic study, Vol. 2: Phytochemistry, physiology, application, bibliography. Veroeffentlichungen des Geobotanischen Instituts der ETH, Stiftung Ruebel (Switzerland), pp. 638.
Li J., Jain M., Vunsh R., Vishnevetsky J., et al. (2004). Callus induction and regeneration in Spirodela and Lemna. Plant Cell Reports, 22: 457-464.
Liu Y., Xu H., Yu C., and Zhou G. (2021). Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis. GCB Bioenergy, 13(1): 70-82.
Manfroi E., Yamazaki-Lau E., Grando M. F., and Roesler E. A. (2015). Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens. Genetics and Molecular Biology, 38(4): 470-476.
Mayerni R., Satria B., Wardhani D. K., and Chan S. R. O. S. (2020). Effect of auxin (2,4-D) and cytokinin (BAP) in callus induction of local patchouli plants (Pogostemon cablin Benth.). IOP Conference Series: Earth and Environmental Science.
Minich J. J., and Michael T. P. (2024). A review of using duckweed (Lemnaceae) in fish feeds. Reviews in Aquaculture, 16(3): 1212-1228.
Moon H., and Stomp A. (1997). Effects of medium components and light on callus induction, growth, and frond regeneration in Lemna gibba. In Vitro Cellular and Developmental Biology–Plant, 33: 20-25.
Moon H.-K., and Yang M.-S. (2002). Nodular somatic embryogenesis and frond regeneration in duckweed, Lemna gibba G3. Journal of Plant Biology, 45: 154-160.
Mostafa H. H., Wang H., Song J., and Li X. (2020). Effects of genotypes and explants on garlic callus production and endogenous hormones. Scientific Reports, 10(1): 4867.
Nakano Y. (2017). Effect of acetosyringone on Agrobacterium-mediated transformation of Eustoma grandiflorum leaf disks. Japan Agricultural Research Quarterly (JARQ), 51(4): 351-355.
Naseem S., Bhat S. U., Gani A., and Bhat F. A. (2021). Perspectives on utilization of macrophytes as feed ingredients for fish in future aquaculture. Reviews in Aquaculture, 13(1): 282-300.
Paguia H. M., Pinsel J., Paguia R. Q., Abuan A. G., Zabala S. D., Corpuz M., and Rodis G. J. (2023). Feeding value of fermented duckweed meal (Lemna minor Linn.) as a plant protein component in formulated diets of free-range chicken (Gallus gallus domesticus Linn.). Journal of Advanced Agricultural Technologies, 10(1): 16-20.
Pandey A. K., Bhat B. V., Balakrishna D., and Seetharama N. (2010). Genetic transformation of sorghum (Sorghum bicolor (L.) Moench). International Journal of Biotechnology and Biochemistry, 6(1): 45-53.
Putra A., and Ritonga M. (2018). Effectiveness of duckweed (Lemna minor) as an alternative feed for native chicken (Gallus domesticus). IOP Conference Series: Earth and Environmental Science.
Raja N. I., Bano A., Rashid H., Chaudhry Z., and Ilyas N. (2010). Improving Agrobacterium-mediated transformation protocol for integration of XA21 gene in wheat (Triticum aestivum L.). Pakistan Journal of Botany, 42(5): 3613-3631.
Reid M., and Bieleski R. (1970). Response of Spirodela oligorrhiza to phosphorus deficiency. Plant Physiology, 46(4): 609-613.
Rogers S. O., and Bendich A. J. (1989). Extraction of DNA from plant tissues. Plant Molecular Biology Manual: 73-83.
Saharan V., Yadav R. C., Yadav N. R., and Chapagain B. P. (2004). High frequency plant regeneration from desiccated calli of indica rice (Oryza sativa L.). African Journal of Biotechnology, 3(5): 256-259.
Sahoo K. K., Tripathi A. K., Pareek A., Sopory S. K., and Singla-Pareek S. L. (2011). An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods, 7: 1-11.
Schween G., and Schwenkel H.-G. (2003). Effect of genotype on callus induction, shoot regeneration, and phenotypic stability of regenerated plants in the greenhouse of Primula ssp. Plant Cell, Tissue and Organ Culture, 72: 53-61.
Sheikholeslam S. N., and Weeks D. P. (1987). Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Molecular Biology, 8: 291-298.
Sosa D., Alves F. M., Prieto M. A., Pedrosa M. C., et al. (2024). Lemna minor: Unlocking the value of this duckweed for the food and feed industry. Foods, 13(10): 1435.
Stadtlander T., Schmidtke A., Baki C., and Leiber F. (2023). Duckweed production on diluted chicken manure. Journal of Animal and Feed Sciences, 33(1): 128-138.
Stefaniak B., Woźny A., and Budna I. (2002). Callus induction and plant regeneration in Lemna minor L. Biologia Plantarum, 45: 469-472.
Stomp A.-M. (2005). The duckweeds: a valuable plant for biomanufacturing. Biotechnology Annual Review, 11: 69-99.
Sulaiman N. S., Zaini H. M., Ishak W. R. W., Matanjun P., et al. (2024). Duckweed protein: Extraction, modification, and potential application. Food Chemistry, 463(Pt 4): 141544.
Taghipour E., Bog M., Frootan F., Shojaei S., et al. (2022). DNA barcoding and biomass accumulation rates of native Iranian duckweed species for biotechnological applications. Frontiers in Plant Science, 13: 1034238.
Ujong A., Naibaho J., Ghalamara S., Tiwari B. K., Hanon S., and Tiwari U. (2025). Duckweed: Exploring its farm-to-fork potential for food production and biorefineries. Sustainable Food Technology, 3(1): 54-80.
Wahyuni D. K., Purnobasuki H., Kuncoro E. P., and Ekasari W. (2020). Callus induction of Sonchus arvensis L. and its antiplasmodial activity. African Journal of Infectious Diseases, 14(1): 1-7.
Wang K.-T., Hong M.-C., Wu Y.-S., and Wu T.-M. (2021). Agrobacterium-mediated genetic transformation of Taiwanese isolates of Lemna aequinoctialis. Plants, 10(8): 1576.
Wang Y. (2016). Callus induction and frond regeneration in Spirodela polyrhiza. Czech Journal of Genetics and Plant Breeding, 52(3): 114-119.
Xu J., Shen Y., Zheng Y., Smith G., et al. (2022). Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Reviews International, 1-15.
Yamamoto Y. T., Rajbhandari N., Lin X., Bergmann B. A., Nishimura Y., and Stomp A.-M. (2001). Genetic transformation of duckweed Lemna gibba and Lemna minor. In Vitro Cellular & Developmental Biology-Plant, 37(3): 349-353.
Yang G.-L., Feng D., Liu Y.-T., Lv S.-M., Zheng M.-M., and Tan A.-J. (2021). Research progress of a potential bioreactor: Duckweed. Biomolecules, 11(1): 93.
Yang J., Li G., Hu S., Bishopp A., et al. (2018). A protocol for efficient callus induction and stable transformation of Spirodela polyrhiza (L.) Schleiden using Agrobacterium tumefaciens. Aquatic Botany, 151: 80-86.
Yang J., Zhao X., Li G., Hu S., Chen Y., Sun Z., and Hou H. (2021). Research and application in duckweeds: A review. Chinese Science Bulletin, 66(9): 1026-1045.
Yang L., Sun J., Yan C., Wu J., et al. (2022). Regeneration of duckweed (Lemna turonifera) involves genetic molecular regulation and cyclohexane release. PLOS One, 17(1): e0254265.
Yang L., Sun J., Yao J., Wang Y., et al. (2021). The framework of plant regeneration in duckweed (Lemna turonifera) comprises genetic transcript regulation and cyclohexane release. Preprint (Version 1) available at Research Square. DOI: https://doi.org/10.21203/rs.3.rs-416943/v1.
Zale J. M., Borchardt-Wier H., Kidwell K. K., and Steber C. M. (2004). Callus induction and plant regeneration from mature embryos of a diverse set of wheat genotypes. Plant Cell, Tissue and Organ Culture, 76: 277-281.