Association studies and yield stability analysis of fonio (Digitaria iburua Kippis Stapf) genotypes in Nigeria

Document Type : Research paper

Authors

National Cereals Research Institute, Badeggi, PMB 008 Bida, Niger State, Nigeria.

Abstract

Correlation and Path analysis were applied to study the association between yield and various traits in fonio. The Additive Main Effects and Multiplicative Interaction (AMMI) model, alongside Genotype Plus Genotype-by-Environment Interaction (GGE) biplot analysis were used to assess the stability and adaptability of fonio populations across nine locations in Nigeria during the 2022 and 2023 growing seasons. The study evaluated twelve genotypes and one local check, arranged in a randomized complete block design with three replications. Planting was standardized with a spacing of 20 cm×20 cm on plots measuring 3 m×4 m. Significant variability was observed within the population, highlighting substantial potential for genetic improvement. Key traits, including plant height, spike length, panicle length, and the number of spikes per plant, exhibited strong positive phenotypic correlations (0.989, 0.973, 0.977, 0.991, respectively) and genotypic correlations (0.991, 0.974, 0.98, 0.993, respectively) with grain yield, suggesting these traits are primarily governed by genetic factors. Among the evaluated genotypes, IBPL05-19-03 consistently achieved high grain yields across the locations, demonstrating broad environmental adaptability and suitability for diverse conditions. Also, genotype IBPL04-06-04 displayed limited adaptability, making it more suitable for specific micro-environments. Furthermore, genotypes IBPL02-12-01, IBPL04-15-08, IBPL05-19-03, IBPL02-04-02, and IBPL05-07-09 showed stability and general adaptability across varying environments, as evidenced by slope values near 1. The trait-relationship analysis indicated that breeding programs targeting improvements in plant height, panicle length, and tillering capacity could lead to significant yield advancements in fonio. The integration of AMMI and GGE models provided a robust statistical framework in analyzing fonio lines, enabling informed selection and development of genotypes that are both high-yielding and environmentally stable across diverse agro-ecological zones.

Keywords


Abdullahi D., and Luka D. (2003). The status of acha (Digitaria exilis) production in Bauchi State of Nigeria: Report of the Crop Area Yield (CAY) for the year 2003. Presented at the 1st National Acha Stakeholders workshop in Jos. Submission of the Bauchi State Agricultural Development Program, Bauchi.
Annicchiarico P. (1997). Additive main effects and multiplicative interaction (AMMI) analysis of genotype-location interaction in variety trials repeated over years. Theoretical and Applied Genetics, 94: 1072-1077. DOI: https://doi.org/10.1007/s001220050517.
Bassi F. M., and Nachit M. M. (2019). Genetic gain for yield and allelic diversity over 35 years of durum wheat breeding at ICARDA. Crop Breeding, Genetics and Genomics, 1: e190004. DOI:  https://doi.org/10.20900/cbgg20190004.
Becker H. C., and Leon J. (1988). Stability analysis in plant breeding. Plant Breeding, 101: 1-23.
Ceccarelli S. (1996). Adaptation to low/high input cultivation. Euphytica, 92: 203-214. DOI: https://doi.org/10.1007/BF00022846.
CIRAD (2004). An African cereal crop. French Agricultural Research Centre for International Development, Paris, 83-97.
Crossa J. (1990). Statistical analyses of multilocation trials. Advances in Agronomy, 44: 55-85. DOI: http://dx.doi.org/10.1016/S0065-2113(08)60818-4.
Dachi S. N., Mamza W. S., and Bakare S. O. (2017). Growth and yield of acha (Digitaria exilis Kippis Stapf) as influenced by sowing methods and nitrogen rates in the Guinea savanna area of Nigeria. FULafia Journal of Science and Technology, 3(2): 33-37.
Dewey D. R., and Lu K. H. A. (1959). Correlation and path coefficient analysis of components of crested wheat grass seed production. Agronomy Journal, 51(9): 515-518.
Eberhart S. A., and Russel L. W. (1966). Stability parameters for comparing varieties. Crop Science, 6: 36-40.
Fikere M., Bing D. J., Tadesse T., and Ayana A. (2014). Comparison of biometrical methods to describe yield stability in field pea (Pisum sativum L.) under south eastern Ethiopian conditions. African Journal of Agricultural Research, 9(33): 2574-2583.
Finlay K. W., and Wilkinson G. N. (1963). The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Research, 14: 742-754.
Fischer R. A., Byerlee D., and Edmeades G. O. (2014). Crop yields and global food security: Will yield increases continue to feed the world? ACIAR Monograph No. 158, Australian Centre for International Agricultural Research: Canberra, 622-634.
Gauch H. G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science, 46(4): 1488-1500.
Gauch H. G., and Zobel, R. W. (1996). AMMI analysis of yield trials. In: Kang M. S., and Gauch H. G. (Eds.), Genotype by Environment Interaction, CRC Press, Boca Raton, 85-122. DOI: http://dx.doi.org/10.1201/9781420049374.ch4.
Gauch H. G., and Zobel R. W. (1997). Identifying mega-environments and targeting genotypes. Crop Science, 37: 311-326. DOI: https://doi.org/10.2135/cropsci1997.0011183X003700020002x.
Gonçalves F., Sales L. P., Galetti M., and Pires M. M. (2021). Combined impacts of climate and land use change and the future restructuring of Neotropical bat biodiversity. Perspectives in Ecology and Conservation, 19(4): 454-463. DOI: https://doi.org/10.1016/j.pecon.2021.07.005.
Hilu K. W., M’Ribu K., Liang H., and Mandelbaum C. (1997). Fonio millets: ethnobotany, genetic diversity and evolution. South African Journal of Botany, 63(4): 185-190.
Hossain A., Knorr G., Lohmann G., Stärz M., and Jokat W. (2020). Climate model results of Fram Strait and Greenland-Scotland Ridge gateway sensitivity studies of COSMOS in NetCDF format. PANGAEA. DOI: https://doi.org/10.1594/PANGAEA.915548.
Iqbal M., Hayat K., Khan R. S. A., Sadiq A., and Islam N. (2006). Correlation and path coefficient analysis for earliness and yield traits in cotton (G. hirsutum L.). Asian Journal of Plant Science, 5: 341-344.
Isong A., Dachi S. N., Umar F. A., Mamza W. S., et al. (2022). Yield performance and stability analysis of some fonio (Digitaria exilis) lines in Nigeria. Badeggi Journal of Agricultural Research and Environment, 4(2): 54-60. DOI: https://doi.org/10.35849/BJARE202202009/63.
Isong A., Balu P. A., and Ramakrishnan P. (2017). Association and principal component analysis of yield and its components in cultivated cotton. Electronic Journal of Plant Breeding, 8(3): 857-864. DOI: https://doi.org/10.5958/0975-928X.2017.00140.5.
Isong A., Eka M. J., and Nwankwo I. I. M. (2013). Correlations and path analysis of yam (Dioscorea rotundata Poir) yield and yield components. International Journal of Applied Research and Technology, 2(11): 65-71.
Janmohammadi M., Sabaghnia N., and Nouraein M. (2014). Path analysis of grain yield and yield components and some agronomic traits in bread wheat. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 62(97): 944-952. DOI: https://doi.org/10.11118/actaun201462050945.
Jideani I. A. (1999). Traditional and possible technological uses of Digitaria exilis (acha) and Digitaria iburua (iburu): a review. Plant Foods for Human Nutrition, 54: 363-374.
Kang M. S. (1993). Simultaneous selection for yield and stability in crop performance trials: consequences for growers. Agronomy Journal, 85: 754-757. DOI: https://doi.org/10.2134/agronj1993.00021962008500030042x.
Kang M. S., and Banga S. S. (2013). Global agriculture and climate change. Journal of Crop Improvement, 27(6): 667-692. DOI: https://doi.org/10.1080/15427528.2013.845051.
Katsenios N., Sparangis P., Chanioti S., Giannoglou M., et al. (2021). Genotype×environment interaction of yield and grain quality traits of maize hybrids in Greece. Agronomy, 11: 357. DOI: https://doi.org/10.3390/agronomy11020357.
Kebede D., Dagnachew L., Megersa D., Chemeda B., Girma M., Geleta G., and Gudeta B. (2019). Genotype by environment interaction and grain yield stability of ethiopian black seeded finger millet genotypes. African Crop Science Journal, 27(2): 281-294. DOI: https://dx.doi.org/10.4314/acsj.v27i2.12.
Khobra R., Sareen S., Kishor M., Kumar A., Tiwari V., and Singh G. P. (2019). Exploring the traits for lodging tolerance in wheat genotypes: a Review. Physiology and Molecular Biology of Plants, 25(3): 589-600. DOI: https://doi.org/10.1007/s12298-018-0629.
Krishnamurthy S. L., Sharma S. K., and Gautam R. K. (2014). Path and association analysis and stress indices for salinity tolerance traits in promising rice (Oryza sativa L.) genotypes. Cereal Research Communication, 42: 474-483. DOI: https://doi.org/10.1556/CRC.2013.0067.
Laxmi T. G., Gaibriyal M. L., and Bineeta M. B. (2023). Direct and indirect effects of yield contributing traits in rice (Oryza Sativa L.). International Journal of Plant and Soil Science, 35(19): 2091-99. DOI: https://doi.org/10.9734/ijpss/2023/v35i193760.
Lenka D., and Misra B. (1973). Path coefficient analysis of yield in rice varieties. Indian Journal of Agricultural Science, 43: 376-379.
Liaqat M., Imtiaz R., Ahmed I., Muhammad R., et al. (2015). Correlation and path analysis for genetic divergence of morphological and fiber traits in upland cotton (Gossypium hirsutum L.). International Journal of Agriculture and Agricultural Research, 7(4): 86-94.
Lin C. S., Binns M. R., and Leovitch, L. P. (1986). Stability analysis: where do we stand? Crop Science, 26: 894-900.
Lobell D. B., Cassman K. G., and Field C. B. (2009). Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34: 179-204. DOI: http://dx.doi.org/10.1146/annurev.environ.041008.093740.
Magar N. M., Pawar V. Y., Chitodkar S. S., and Bhadane R. S. (2024). Genotype by environment interaction and grain yield stability in sorghum (Sorghum bicolor (L.) Moench) hybrids. International Journal of Scientific Research in Science and Technology, 11(10): 198 -204.
Makinde S., Badu-Apraku B., Ariyo O., and Porbeni J. (2023). Combining ability of extra-early maturing pro-vitamin A maize (Zea mays L.) inbred lines and performance of derived hybrids under Striga hermonthica infestation and low soil nitrogen. PLOS One, 18(2): e0280814. DOI: http://dx.doi.org/10.1371/journal.pone.0280814.
Mishra J. S., Kumar R., Mondal S., Poonia S. P., et al. (2022). Tillage and crop establishment effects on weeds and productivity of a rice-wheat-mungbean rotation. Field Crops Research, 284: 378-429. DOI: https://doi.org/10.1016/j.fcr.2022.108577.
Morales P. J. P. (2003). Digitaria exilis as a crop in the Dominican Republic. In: Janick J., and Whipkey A. (Eds.), Trends in crops and new uses, ASHS Press, Alexandria, VA.
Muzari W., Gatsi W., and Muvhunzi S. (2012). The impacts of technology adoption on smallholder agricultural productivity in sub-Saharan Africa: A review. Journal of Sustainable Development, 5(8): 69.
Ndeko A. B., Founoune-Mboup H., and Kane A. (2022). Arbuscular mycorrhizal fungi alleviate the negative effect of temperature stress in millet lines with contrasting soil aggregation potential. Gesunde Pflanzen, 74: 53-67. DOI: https://doi.org/10.1007/s10343-021-00588-w.
Niu Y., Chen T., Zhao C., and Zhou M. (2021). Improving crop lodging resistance by adjusting plant height and stem strength. Agronomy, 11: 2421. DOI: https://doi.org/10.3390/agronomy11122421.
Obiokoro O. G. (2005). Agrometeorology. Dunkwu Publishers, Onitsha, 24-30.
Philip T., and Itodo I. (2006). Acha (Digitaria spp.) a “rediscovered” indigenous crop of west Africa. Agricultural Engineering International: the CIGR Ejournal, Invited Overview, 23(8): 8-9.
Plant Breeding Tools (2014). Version 1.3. Biometrics and Breeding Informatics Plant Breeding, Genetics and Biotechnology Division. International Rice Research Institute, Philippines.
Pulseglove J. W. (1972). Tropical crops. Monocotyledons I. John wiley and sons, inc. New York, 142-144.
Qin D. D., Liu R., Xu F., Dong G., et al. (2023). Characterization of a barley (Hordeum vulgare L.) mutant with multiple stem nodes and spikes and dwarf (msnsd) and fine-mapping of its causal gene. Frontiers Plant Science, 14: 118. DOI: https://doi.org/10.3389/fpls.2023.1189743.
Rehman H. U., Tariq A., Ashraf I., Ahmed M., Muscolo A., Basra S. M. A., and Reynolds M. (2021). Evaluation of physiological and morphological traits for improving spring wheat adaptation to terminal heat stress. Plants, 10(455): 1-15. DOI: https://doi.org/10.3390/plants10030455.
Shavrukov Y., Kurishbayev A., Jatayev S., Shvidchenko V., et al. (2017). Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers Plant Science, 8: 19-50. DOI: https://doi.org/10.3389/fpls.2017.01950.
Singh H., Singh V., Kumar R., Baranwal D., and Ray P. (2014). Assessment of genetic diversity based on cluster and principal component analyses for yield and its contributing characters in bitter gourd. Indian Journal of Horticulture, 71: 55-60.
Statistical Tool for Agricultural Research (2014). version 2.0.1 International Rice Research Institute, Philippines.
Teng, L. I., Zhang, X., Liu, Q., Liu, J., Chen, Y., and Sui, P. (2022). Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review. Journal of Integrative Agriculture, 21(9): 2465-2476. DOI: https://doi.org/10.1016/j.jia.2022.07.013.
Umar F. A., Isong A., Dachi S. N., Onyia K. C., et al. (2020). Genetic variability, heritability, and genetic advance for yield and some agronomic traits in Digitaria exilis accessions. Indian Journal of Pure and Applied Biosciences, 8(1): 1-5. DOI: http://dx.doi.org/10.18782/2582-2845.7956.
Vemier P., and Dansi A. (2000). Participatory assessment and farmers knowledge on yam varieties (D. rotundata) in Benin. Paper Presented at the ISlRC 2000 Symposium, Tsukuba, Ibaraki, Japan., September 10-16.
Wang R., Wu W., Cheng X., and Peng W. (2023). High plant density increases sunlight interception and the yield of direct-seeded winter canola in China. Experimental Agriculture, 59: e2. DOI: https://doi.org/10.1017/S0014479722000564.
Wu W., and Ma B. (2022). Understanding the trade–off between lodging resistance and seed yield, and developing some non–non-destructive methods for predicting crop lodging risk in canola production. Field Crops Research 288(108691): 0378-4290. DOI: https://doi.org/10.1016/j.fcr.2022.108691.
Yan W. K., Hunt L. A., Sheng Q. L., and Szlavnics Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40(3): 597-605. DOI: https://doi.org/10.2135/cropsci2000.403597x.
Yan W. (2013). Biplot analysis of incomplete two-way data. Crop Science, 53(1): 48-57. DOI: https://doi.org/10.2135/cropsci2012.05.0301.
Yan W., and Kang M. S. (2002). GGE Biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, pp. 44.
Yan W., and Tinker N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86(3): 623-645.
Yan W., Wang B., Chan E., and Mitchell-Olds T. (2021). Genetic architecture and adaptation of flowering time among environments. New Phytologist, 230(3): 1214-1227. DOI: https://doi.org/10.1111/nph.17229.
Yank W. (2011). GGE biplot vs. AMMI graphs for genotype by environment data analysis. Journal of Indian Society of Agricultural Statistics, 65(2): 181-193.
Zhao S., Chancellor W., Jackson T., and Boult C. (2021). Productivity as a measure of performance: ABARES perspective. Australian Farm Institute, Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES).