Ahakpaz F., and Ahakpaz, F. (2014). Stability analysis of barley lines and cultivars grain yield using GGE biplot model. Agroecology Journal, 9: 1-12.
Ahmadi J., Vaezi B., and Fotokian M. H. (2012). Graphical analysis of multi-environment trials for barley yield using AMMI and GGE-biplot under rain-fed conditions. Journal of Plant Physiology and Breeding, 2: 43-54.
Amelework A. B., Bairu M. W., Marx R., Laing M., and Venter S. L. (2023). Genotype×environment interaction and stability analysis of selected cassava cultivars in South Africa. Plants, 12: 2490.
Anderson T., and Lee C. R. (2014). Strong selection genome-wide enhances fitness trade-offs across environments and episodes of selection. Evolution, 68: 16-31.
Anonymous. (2022). Agricultural statistics (2020-2021 cropping year). Vol 1: Crops Plants. Ministry of Agriculture-Jahad, Iran, pp. 93.
Bakhshi B., and Shahmoradi S. S. (2023). Simultaneous selection of high-yielding and drought-tolerant barley landraces using GT, GYT and GYSI methodologies. Cereal Research Communication, 51: 237-248.
Barati A., Ghazvini H., Nikkhah H. R., Kouhkan S. H. A., et al. (2023). Golchin, a new barley cultivar for planting in warm zone of Iran. Research Achievements for Field and Horticulture Crops, 11: 97-108.
Ebem E. C., Afuape S. O., Chukwu S. C., and Ubi B. E. (2021). Genotype×environment interaction and stability analysis for root yield in sweet potato [Ipomoea batatas (L.) Lam]. Frontiers in Agronomy, 3: 665564
Farshadfar E. (2008). Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pakistan Journal of Biological Sciences, 11: 1791.
Gerrano A. S., Rensburg W. S. J., Mathew I., Shayanowko A. I. T., et al. (2022). Genotype and genotype×environment interaction effects on the grain yield performance of cowpea genotypes in dryland farming system in South Africa. Euphytica, 216: 80.
Ghaffari M., Gholizadeh A., Andarkhor S. A., Zareei Siahbidi A., Ahmadi S. A., Shariati F., and Rezaeizad A. (2021). Stability and genotype×environment analysis of oil yield of sunflower single cross hybrids in diverse environments of Iran. Euphytica, 217: 187.
Ghazvini H., and Yousefi A. (1999). Evaluation of adaptability and yield comparison of advanced barley lines in warm zones. Iranian Journal of Crop Sciences, 1: 29- 41.
Ghazvini H., Bagherikia S., Pour-Aboughadareh A., Sharifalhossaini M., et al. (2021). GGE biplot analysis of promising barley lines in the cold regions of Iran. Journal of Crop Improvement, 36: 461-472.
Ghazvini H., Lakzadeh I., Kouhkan S. H. A., Fallahi H. A., et al. (2020). Nowruz, a new barley cultivar with lodging resistance appropriate for cultivation in the south warm and dry climate zone of Iran. Research Achievements for Field and Horticulture Crops, 9: 53-66.
Ghazvini H., Lakzadeh I., Kouhkan S. H. A., Jabbari M., et al. (2019). Oxin, a new irrigated six-rowed barley cultivar with wide adaptability in warm agro-climate zone of Iran. Research Achievements for Field and Horticulture Crops, 7: 149-159.
Ghazvini H., Pour-Aboughadareh A., Jasemi S. S., Chaichi M., Tajali H., and Bocianowski J. (2024). A framework for selection of high-yielding and drought-tolerant genotypes of barley: applying yield-based indices and multi-index selection models. Journal of Crop Health, 76: 601-616.
Ghazvini H. O., Kouhkan S. H. A., Lakzadeh I., Fahhahi H. A., et al. (2014). Zahak, a new irrigated barley cultivar with wide adaptability in the warm and dry agro-climate zone in the south of Iran. Research Achievements for Field and Horticulture Crops, 3: 15-26
Hilmarsson H. S., Rio S., and Sanchez, J. I. Y. (2021). Genotype by environment interaction analysis of agronomic spring barley traits in Iceland using AMMI, factorial regression model and linear mixed model. Agronomy, 11: 499.
Hossain M. A., Sarker U., Azam M. G., Kobir M. S., et al. (2023). Integrating BLUP, AMMI, and GGE models to explore GE interactions for adaptability and stability of winter lentils (Lens culinaris Medik.). Plants, 12: 2079.
Jalata Z. (2011). GGE-biplot analysis of multi-environment yield trials of barley (Hordeum vulgare L.) Genotypes in southeastern Ethiopia highlands. International Journal of Plant Breeding and Genetics, 5: 59-75.
Jamshidmoghaddam M., and Pourdad S. S. (2013). Genotype×environment interactions for seed yield in rainfed winter safflower (Carthamus tinctorius L.) multi-environment trials in Iran. Euphytica, 190: 357-369.
Jedzura S., Bocianowski J., and Matysik P. (2023). The AMMI model application to analyze the genotype–environmental interaction of spring wheat grain yield for the breeding program purposes. Cereal Research Communications, 51: 197-205.
Kendal E. (2016). GGE biplot analysis of multi-environment yield trials in barley (Hordeum vulgare L.) cultivars. Ekin Journal of Crop Breedhng and Genetics, 2: 90-99.
Linus R. A., Olanrewaju O. S., Oyatomi O., Idehen E. O., and Abberton M. (2023). Assessment of yield stability of bambara groundnut (Vigna subterranea (L.) Verdc.) using genotype and genotype–environment interaction biplot analysis. Agronomy, 13: 2558.
Mortazavian S. M., Nikkhah H. R., Hassani F. A., Shari-al-Hosseini M., Taheri M., and Mahlooji M. (2014). GGE biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. Journal of Agricultural and Science Technology, 16: 609-622.
Olivoto T., and Lucio A. D. (2020). Metan: An R package for multi-environment trial analysis. Methods in Ecology and Evolution, 11: 783-789.
Perkins, J. M., and Jinks J. L. (1968). Environments and genotype environment components of variability III. multiple lines and crosses. Heredity, 23: 339-356.
Pour-Aboughadareh A., Barati A., Gholipoor A., Zali H., Marzooghian A., Koohkan S. A., Shahbazi-Homonloo K., and Houseinpour A. (2023a). Deciphering genotype-by-environment interaction in barley genotypes using different adaptability and stability methods. Journal of Crop Science and Biotechnology, 26: 547-562.
Pour-Aboughadareh A., Ghazvini H., Jasemi S. S., Mohammadi S., et al. (2023b). Selection of high-yielding and stable genotypes of barley for the cold climate in Iran. Plants, 12: 2410.
R Core Team, (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at
https://www.R-project.org/.
Taheripourfard Z. S., Izadi-darbandi A., Ghazvini H., Ebrahimi M., Mortazavian S. M., and Abdipour M. (2017). Identifying superior barley (Hordeum vulgare L.) genotypes using GGE biplot across warm and moderate environments under irrigated conditions in Iran. Crop Breeding Journal, 7: 23-35.
Vaezi B., Pour-Aboughadareh A., Mohammadi R., Armion M., Mehraban A., Hossein-Pour T., and Dorri M. (2017). GGE biplot and AMMI analysis of barley yield performance in Iran. Cereal Research Communication, 45: 500-511.
Vaezi B., Pour-Aboughadareh A., Mohammadi R., Mehraban A., et al. (2019). Integrating different stability models to investigate genotype×environment interactions and identify stable and high yielding barley genotypes. Euphytica, 215: 63.
Van Eeuwijk F. A., Bustos-Korts D. V., and Malosetti M. (2016). What should students in plant breeding know about the statistical aspects ofgenotype×Environment interactions? Crop Science, 56: 2119-2140.
Wodebo K. Y., Tolemariam T., Demeke S., Garedew W., et al. (2023). AMMI and GGE biplot analyses for mega-environment identification and selection of some high-yielding oat (Avena sativa L.) genotypes for multiple environments. Plants, 12: 3064.
Yan W., and Kang M. S. (2002). GGE biplot analysis: A graphical tool for breeders, geneticists and agronomists. CRC Press, USA, pp. 286.
Yan W., and Tinker N. A. (2006). Biplot analysis of multi-environment trial data: principles and applications. Canadian Journal of Plant Science, 86: 623-645.
Yan W., Fregeau-reid J. A., Pageau D., Martin R. A., et al. (2010). Identifying essential test locations for oat breeding in eastern Canada. Crop Science, 50: 504-515.
Yan W., Hunt L. A., Sheng Q., and Szlavnics Z. (2000). Cultivar evaluation and mega-environment investigations based on the GGE biplot. Crop Science, 40: 597-605.