Ahmadi J., Mohammadi A., and Najafi Mirak T. (2012). Targeting promising bread wheat (Triticum aestivum L.) lines for cold climate growing environments using AMMI and SREG GGE biplot analyses. Journal of Agricultural Science and Technology, 14: 645-657.
Amini F., Majidi M. M., and Mirlohi A. (2013). Genetic and genotype×environment interaction analysis for agronomical and some morphological traits in half-sib families of tall fescue. Crop Science, 53: 411-421.
Anandan A., Sabesan T., Eswaran R., Rajiv G., Muthalagan N., and Suresh R. (2009). Appraisal of environmental interaction on quality traits of rice by additive main effects and multiplicative interaction analysis. Cereal Research Communications, 37(1): 139-148.
Baik B. K., and Ullrich S. E. (2008). Barley for food: characteristics, improvement, and renewed interest. Journal of Cereal Science, 48: 233-242.
Bannayan M., Sanjani S., Alizadeh A., Lotfabadi S. S., and Mohamadian, A. (2010). Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crops Research, 118: 105-114.
Bantayehu M. (2010). Analysis and correlation of stability parameters in malting barley. African Journal of Crop Science, 17: 145-153.
Barati A., Arazmjo E., Tabatabaei S. A., and Taheri Mazandarani M. (2023). Selection of tolerant barley (Hordeum vulgare L.) genotypes to terminal drought stress based on grain yield, yield stability and stress tolerance indices. Iranian Journal of Crop Sciences, 25(3): 258-274.
Brar K. S., Manhas S., and Hegde D. M. (2012). GGE biplot analysis visualization of mean performance and stability for seed yield in safflower (Cartamus tinctorus) at diverse locations in India. International Journal of Agriculture Science and Research, 2: 77-90
Comstock R. E., and Moll R. H. (1963). Genotype-environment interactions. In: Hanson W. D., and Robinson H. F. (Eds.), Statistical genetics and plant breeding. Washington, DC: National Academy of Sciences, National Research Council, 164-196.
Ebdon J. S., and Gauch H. G. (2002). Additive main effect and multiplicative interaction analysis of national turfgrass performance trials. II Cultivar recommendations. Crop Science, 42: 497-506.
Gauch H. G. (1993). Prediction, parsimony and noise: A model can be more accurate than a data used to build it because it amplifies hidden patterns and discards unwanted noise. American Scientist, 81: 468- 478.
Gauch H. G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science, 46: 1488-1500.
Gauch H. G., Piepho H. P., and Annicchiarico P. (2008). Statistical analysis of yield trials by AMMI and GGE. Further considerations. Crop Science, 48: 866-889.
Gauch H. G., and Zobel R. W. (1996). AMMI analysis of yield trials. In: Kang M. S., and Gauch H. G. (Eds.), Genotype-by-environment interaction. CRC Press, 85-122.
Hassani M., Heidari B., Dadkhodaie A., and Stevanato P. (2018). Genotype by environment interaction components underlying variations in root, sugar and white sugar yield in sugar beet (Beta vulgaris L.). Euphytica, 214: 79. DOI: https://doi.org/10.1007/s10681-018-2160-0.
Hemadesh I., Ahmadi J., Fabriki-Ourang S., and Vaezi B. (2021). Appraising of barley promising lines relying on high grain yield and desirable agronomy traits in rainfed conditions using SIIG and ASIIG techniques. Iranian Journal of Genetics and Plant Breeding, 10(1): 11-30.
Johnson R., Stitch L., Olwell P., Lambert S., Horning M., and Cronn R. (2010). What are the best seed sources for ecosystem restoration on BLM and USFS lands? Native Plants Journal, 11: 117-130.
Kaya Y., Palta C., and Taner S. (2002). Additive main effects and multiplicative interactions analysis of yield performance in bread wheat genotypes across environments. Turkish Journal of Agriculture and Forestry, 26: 275-279.
Kumar A., Jnanesha A. C., Lal R. K., Chanotiya C. S., Venugopal S., and Swamy Y. V. V. S. (2023). Precision agriculture innovation focuses on sustainability using GGE biplot and AMMI analysis to evaluate GE interaction for quality essential oil yield in Eucalyptus citriodora Hook. Biochemical Systematics and Ecology, 107: 104603. DOI: https://doi.org/10.1016/j.bse.2023.104603.
Namdari A., Pezeshkpoor P., Mehraban A., Mirzaei A., and Vaezi B. (2022). Evaluation of genotype×environment interaction using WAASB and WAASBY indices in multi-environment yield trials of rainfed lentil (Lens culinaris L.) genotypes. Iranian Journal of Crop Sciences, 24(2): 165-180. (In Persian)
Oral E., Kendal E., and Dogan Y. (2018). Selection the best barley genotypes to multi and special environments by AMMI and GGE biplot models. Fresenius Environmental Bulletin, 27: 5179-5187.
Pacheco A., Vargas M., Alvarado G., Rodríguez F., Crossa J., and Burgueño J. (2015). GEA-R (Genotype x Environment Analysis with R for Windows) Version 4.1. https://hdl.handle.net/11529/10203, CIMMYT Research Data and Software Repository Network, V16.
Perkins J. M., and Jinks J. L. (1968). Environmental and genotype environmental components of variability IV. Non-linear interactions for multiple inbred lines. Heredity, 23: 525-535.
Pourdad S. S., and Mohammadi R. (2008). Use of stability parameters for comparing safflower genotypes in multi-environment trials. Asian Journal of Plant Science, 7(1): 100-104.
Purchase J. L., Hatting H., and Van Deventer C. S. (2000). Genotype×environment interaction of winter wheat (T. aestivum) in South Africa: stability analysis of yield performance. South African Journal of Plant and Soil, 17: 101-107.
Saeidnia F., Majidi M. M., Dehghani M. R., Mirlohi A., and Araghi B. (2021). Multi environmental evaluation of persistence and drought tolerance in smooth bromegrass (Bromus inermis): genetic analysis for stability in combining ability. Crop & Pasture Science, 72: 565-574.
Saeidnia F., Majidi M. M., Dehghani M. R., Saeidi G., and Mirlohi A. (2022). Drought tolerance and stability of native and foreign tall fescue genotypes: Comparison of AMMI and GGE biplot analyses. Agronomy Journal, 114(4): 2180-2185. DOI: https://doi.org/10.1002/agj2.21127.
Saeidnia F., Majidi M. M., and Mirlohi A. (2017a). Genetic analysis of stability in poly-crossed populations of orchardgrass. Crop Science, 57: 2828-2836.
Saeidnia F., Majidi M. M., and Mirlohi A. (2017b). Selection for high yield, combining ability, and stability in smooth bromegrass. Journal of Agricultural Science and Technology, 19: 1405-1416.
Saeidnia F., Taherian M., and Nazeri S. M. (2023). Graphical analysis of multi-environmental trials for wheat grain yield based on GGE-biplot analysis under diverse sowing dates. BMC Plant Biology, 23: 198. DOI: https://doi.org/10.1186/s12870-023-04197-9.
Taherian M., Nikkhah H. R., Aghnoum R., Sharifi Alhoseini M., Mahlooji M., Taheri Mazandrani M., Tabatabaei S. A., and Hassani F. (2022). Graphical analysis of grain yield stability for selection of suprior barley (Hordeum vulgare L.) promising lines in temperate regions of Iran. Iranian Journal of Crop Sciences, 24(1): 64-78. (In Persian)
Tarakanovas P., and Ruzgas V. (2006). Additive main effects and multiplicative interactions analysis of grain yield of wheat varieties in Lithuania. Agronomy Research, 4: 91-98.
Vita P. D., Mastrangeloa A. M., Matteua L., Mazzucotellib E., et al. (2010). Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crops Research, 119: 68-77.
Yan W. (2024). Two types of biplots to integrate multi‐trial and multi‐trait information for genotype selection. Crop Science, 64: 1608-1618
Yan W. (2001). GGE biplot-A windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agronomy Journal, 93: 1111-1118.
Yan W., and Tinker N. A. (2006). Biplot analysis of multi-environment trial data: principles and applications. Canadian Journal of Plant Science, 86: 623-645.
You S., and Izydorczyk M. (2007). Comparison of the physicochemical properties of barley starches after partial α-amylolysis and acid/alcohol hydrolysis. Carbohydrate Polymers, 69: 489-502.
Zobel R. W., Wright M. J., and Gauch H. G. (1988). Statistical analysis of a yield trial. Agronomy Journal, 80: 388-393.