Khatri A., Ahmed Khan I., Aslam Javed M., Aquil Siddiqui M., et al. (2002). Studies on callusing and regeneration potential of indigenous and exotic sugarcane clones. Asian Journal of Plant Sciences, 1(1): 41-43.
Joshi A. J., Parmar V. L., Acharya Z. R., Udutha J. V., and Madhuri M. (2021). Genetic variability analysis in sugarcane (Saccharum spp. Complex) through in vitro chemical mutagenesis on callus culture. The Pharma Innovation, 10: 22-29.
Aksa A., Setiawati Y., Minarsih H., Riyadi I., Prasetyo M., Sinta M., Sumaryono S., and Saptari R. T. (2023). Callus stage and morphology affect the DNA yield on the DNA extraction from the sugarcane in vitro callus. IOP Conference Series: Earth and Environmental Science, 1255(1): 012056.
Badawy O., Nasr M., and Alhendawi R. (2008). Response of sugarcane (Saccharum species hybrid) genotypes to embryogenic callus induction and in vitro salt stress. Sugar Tech, 10: 243-247.
Behera K., and Sahoo S. (2009). Rapid in vitro micro propagation of sugarcane (Saccharum officinarum L. cv- Nayana) through callus culture. Nature and Science, 7(4): 1545-0740.
Cheavegatti-Gianotto A., de Abreu H. M. C., Arruda P., Bespalhok Filho J. C., et al. (2011). Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil. Tropical Plant Biology, 4(1): 62-89.
Dhir S., Knowles K., Pagan C. L., Mann J., and Dhir S. (2010). Optimization and transformation of Arundo donax L. using particle bombardment. African Journal of Biotechnology, 9(39): 6460-6469.
Guirimand G., Burlat V., Oudin A., Lanoue A., St-Pierre B., and Courdavault V. (2009). Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Reports, 28(8): 1215-1234.
Irvine J. E. (1999). Saccharum species as horticultural classes. Theoretical and Applied Genetics, 98(2): 186-194.
Jiang P., Zhang K., Ding Z., He Q., Li W., Zhu S., Cheng W., Zhang K., and Li K. (2018). Characterization of a strong and constitutive promoter from the Arabidopsis serine carboxypeptidase-like gene AtSCPL30 as a potential tool for crop transgenic breeding. BMC Biotechnology, 18: 59.
Joyce P. A., and Sun, Y. (2020). Biolistics-mediated gene delivery in sugarcane. In: Rustgi S., and Luo H. (Eds.), Biolistic DNA Delivery in Plants: Methods and Protocols, 2124: 217-228.
Kaur A., Gill M. S., Ruma D., and Gosal S. S. (2008). Enhanced in vitro shoot multiplication and elongation in sugarcane using cefotaxime. Sugar Tech, 10(1): 268.
Kona P., Kumar M. H., Reddy K. H. P., Reddy D. M., Eswar Reddy N. P., Latha P., and Balaji M. S. (2019). Effect of 2, 4 D and EMS On in vitro regeneration in sugarcane cultivar, Co86032. International Journal of Current Microbiology and Applied Sciences, 8(3): 1228-1236.
Liu D., Oard S. V., and Oard J. H. (2003). High transgene expression levels in sugarcane (Saccharum officinarum L.) driven by the rice ubiquitin promoter RUBQ2. Plant Science, 165(4): 743.
Lonsdale D., Onde S., and Cuming, A. (1990). Transient expression of exogenous DNA in intact, viable wheat embryos following particle bombardment. Journal of Experimental Botany, 41(9): 1161-1165.
Maeda S., Ackley W., Yokotani N., Sasaki K., Ohtsubo N., Oda K., and Mori M. (2023). Enhanced resistance to fungal and bacterial diseases due to overexpression of BSR1, a Rice RLCK, in sugarcane, tomato, and torenia. International Journal of Molecular Sciences, 24(4): 3644.
Matroodi S., Motalebi M., Zamani M. R., Mousavi A., Davoodi D., and Jahromi Z. (2013). Sugarcane (NCo310) transient transformation using uidA reporter gene. Iranian Journal of Biotechnology, 11: 54-63.
Mbambalala N., Panda S. K., and van der Vyver C. (2021). Overexpression of AtBBX29 improves drought tolerance by maintaining photosynthesis and enhancing the antioxidant and osmolyte capacity of sugarcane plants. Plant Molecular Biology Reporter, 39(2): 419-433.
McElroy D., Zhang W., Cao J., and Wu R. (1990). Isolation of an efficient actin promoter for use in rice transformation. The Plant Cell, 2(2): 163-171.
Mohanan M. V., Pushpanathan A., Padmanabhan S., Sasikumar T., et al. (2021). Overexpression of Glyoxalase III gene in transgenic sugarcane confers enhanced performance under salinity stress. Journal of Plant Research, 134(5): 1083-1094.
Mousavi M., Mousavi A., Habashi A. A., and Dehsara B. (2014). Genetic transformation of date palm (Phoenix dactylifera L. cv. ‘Estamaran’) via particle bombardment. Molecular Biology Reports, 41(12): 8185-8194.
Mousavi M., Mousavi A., Habashi A., and Arzani K. (2009). Optimization of physical and biological parameters for transient expression of uidA gene in embryogenic callus of date palm (Phoenix dactylifera L.) via particle bombardment. African Journal of Biotechnology, 8(16): 16.
Murashige T., and Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3): 473-497.
Nagai K., Mori Y., Ishikawa S., Furuta T., et al. (2020). Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature, 584(7819): 7819.
Oz M. T., Altpeter A., Karan R., Merotto A., and Altpeter F. (2021). CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Frontiers in Genome Editing, 3: 673566.
Parveez G. K. A., Chowdhury M. K. U., and Saleh N. M. (1997). Physical parameters affecting transient GUS gene expression in oil palm (Elaeis guineensis Jacq.) using the biolistic device. Industrial Crops and Products, 6(1): 41-50.
Petrillo C. P., Carneiro N. P., Purcino A. Á. C., Carvalho C. H. S., Alves J. D., and Carneiro A. A. (2008). Optimization of particle bombardment parameters for the genetic transformation of Brazilian maize inbred lines. Pesquisa Agropecuária Brasileira, 43: 371-378.
Ramesh M., and Gupta A. K. (2005). Transient expression of β-glucuronidase gene in indica and japonica rice (Oryza sativa L.) callus cultures after different stages of co-bombardment. African Journal of Biotechnology, 4(7): 596-600.
Rasco-Gaunt S., Riley A., Barcelo P., and Lazzeri P. A. (1999). Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Reports, 19(2): 118-127.
Santosa D. A., Hendroko R., Farouk A., and Greiner R. (2004). A rapid and highly efficient method for transformation of sugarcane callus. Molecular Biotechnology: The Journal of Molecular Biology Protocols, Reviews and Applications, 28(2): 113-120.
Schöpke C., Taylor N. J., Cárcamo R., Beachy R. N., and Fauquet C. (1997). Optimization of parameters for particle bombardment of embryogenic suspension cultures of cassava (Manihot esculenta Crantz) using computer image analysis. Plant Cell Reports, 16(8): 526-530.
Subramaniam S., Mahmood M., Abdullah M. P., Meon S., Xavier R., and Mohd Fadzillah N. (2005). Physical and biological parameters affecting transient GUS and GFP expression in banana via particle bombardment. Asia Pacific Journal of Molecular Biology and Biotechnology, 13(1): 35-57.
Sun L., Liu S., Ren J., Cui M., Wang L., and Leng P. (2011). Optimization of particle bombardment conditions by β- glucuronidase (GUS) reporter system in tomato fruit. African Journal of Biotechnology, 10(4): 675-683.
Tadesse Y., Sági L., Swennen R., and Jacobs M. (2003). Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell, Tissue and Organ Culture, 75(1): 1-18.
Walter C., Grace L. J., Wagner A., White D. W. R., et al. (1998). Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Reports, 17(6): 460-468.
Wang J., Roe B., Macmil S., Yu Q., Murray J. E., et al. (2010). Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics, 11(1): 261.
Weng L., Deng H., Xu J., Li Q., Wang L., Jiang Z., Zhang H., Li Q, and Zhang L. (2006). Regeneration of sugarcane elite breeding lines and engineering of stem borer resistance. Pest Management Science, 62(2): 178-187.