Stevioside and rebaudioside A production in treated hairy root culture of Stevia rebaudiana with elicitors

Document Type : Research paper


Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University (IKIU), Qazvin, Iran.


Stevia rebaudiana is an important medicinal plant that is used by people with diabetes because of its steviol glycosides such as stevioside and rebaudioside A. Considering the limitation of seed production in this plant and the time-consuming nature of its propagation by stem cuttings, the use of a hairy root culture can be a suitable strategy for the production of these compounds. In this study, after the production of hairy roots by Agrobacterium rhizogenes strain ATCC15834 and their proliferation, different concentrations of methyl jasmonate (0, 50, 100, 150, and 200 µM) and salicylic acid (0, 30, 60, 90, and 120 mg/L) were applied and sampling was done at different times (24, 48, 72, and 96 h). The use of 100 μM methyl jasmonate for 48 h resulted in the accumulation of 47.31 mg/g DW, the production of 134.30 mg/L stevioside, the accumulation of 45.11 mg/g DW, and the production of 128.41 mg/L rebaudioside A and the use of 200 μM caused the accumulation of 45.56 mg/g DW and production of 120.47 mg/L rebaudioside A. While, among the different concentrations of salicylic acid, only the use of 90 mg/L for 72 h increased the accumulation of rebaudioside A (68.36 mg/g DW), and the other concentrations had a negative effect on the accumulation and production of stevioside and rebaudioside A. In conclusion, these findings showed that methyl jasmonate and salicylic acid can inhibit the growth of hairy roots and instead enhance the accumulation and production of stevioside and rebaudioside A.


Abdelsattar A. M., Elsayed A., El-Esawi M. A., and Heikal Y. M. (2023). Enhancing Stevia rebaudiana growth and yield through exploring beneficial plant-microbe interactions and their impact on the underlying mechanisms and crop sustainability. Plant Physiology and Biochemistry, 198: 107673.
Ahmadpoor F., Zare N., Asghari R., and Sheikhzadeh P. (2022). Sterilization protocols and the effect of plant growth regulators on callus induction and secondary metabolites production in vitro cultures Melia azedarach L. AMB Express, 12: 3.
Alcalde M. A., Perez-Matas E., Escrich A., Cusido R. M., Palazon J., and Bonfill M. (2022). Biotic elicitors in adventitious and hairy root cultures: A review from 2010 to 2022. Molecules, 27: 5253.
Alvarado-Orea I. V., Paniagua-Vega D., Capataz-Tafur J., Torres-López A., Vera-Reyes I., García-López E., and Huerta-Heredia A. A. (2020). Photoperiod and elicitors increase steviol glycosides, phenolics, and flavonoid contents in root cultures of Stevia rebaudiana. In Vitro Cellular & Developmental Biology - Plant, 56: 298-306.
Baenas N., García-Viguera C., and Moreno D. A. (2014). Elicitation: a tool for enriching the bioactive composition of foods. Molecules, 19(9): 13541-13563.
Bayraktar M., Naziri E., Akgun I. H., Karabey F., Ilhan E., Akyol B., Bedir E., and Gurel A. (2016). Elicitor-induced stevioside production, in vitro shoot growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant Cell, Tissue and Organ Culture (PCTOC), 127: 289-300.
Chandra S. (2012). Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnology Letters, 34: 407-415.
Danaee M., Farzinebrahimi R., Kadir M. A., Sinniah U. R., Mohamad R., and Mat Taha R. (2015). Effects of MeJA and SA elicitation on secondary metabolic activity, antioxidant content and callogenesis in Phyllanthus pulcher. Brazilian Journal of Botany, 38: 265-272.
Dong J., Wan G., and Liang Z. (2010). Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology, 148: 99-104.
Farjaminezhad R., and Garoosi G.-A. (2019). New biological trends on cell and callus growth and azadirachtin production in Azadirachta indica. 3 Biotech, 9: 309.
Farjaminezhad R., and Garoosi G. (2021a). Improvement and prediction of secondary metabolites production under yeast extract elicitation of Azadirachta indica cell suspension culture using response surface methodology. AMB Express, 11: 43.
Farjaminezhad R., and Garoosi G. (2021b). Prediction of the effect of chitosan on cell suspension culture of Azadirachta indica by response surface methodology. Plant Cell, Tissue and Organ Culture (PCTOC), 146: 323-337.
Fu C.-X., Zhao D.-X., Xue X.-F., Jin Z.-P., and Ma F. S. (2005). Transformation of Saussurea involucrata by Agrobacterium rhizogenes: Hairy root induction and syringin production. Process Biochemistry, 40: 3789-3794.
Gonçalves S., and Romano A. (2018). Production of plant secondary metabolites by using biotechnological tools. Secondary Metabolites-Sources and Applications, 5: 81-99.
Hussain M. S., Fareed S., Ansari S., Rahman M. A., Ahmad I. Z., and Saeed M. (2012). Current approaches toward production of secondary plant metabolites. Journal of Pharmacy & Bioallied Sciences, 4: 10.
Jaber-Vazdekis N. E., Barres M. L., Ravelo Á. G., and Zárate R. (2008). Effects of elicitors on tropane alkaloids and gene expression in Atropa baetica transgenic hairy roots. Journal of Natural Products, 71: 2026-2031.
Japelaghi R. H., Haddad R., and Garoosi G.-A. (2011). Rapid and efficient isolation of high-quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Molecular Biotechnology, 49: 129-137.
Jeyasri R., Muthuramalingam P., Karthick K., Shin H., Choi S. H., and Ramesh M. (2023). Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review. Plant Cell, Tissue and Organ Culture (PCTOC), 153: 447-458.
Kandoudi W., Radácsi P., Gosztola B., and Zámboriné Németh É. (2022). Elicitation of medicinal plants in vivo-is it a realistic tool? The effect of methyl jasmonate and salicylic acid on lamiaceae species. Horticulturae, 8: 5.
Kareem Z. J., Su L., Rathgeb A., Sirrenberg A., Hadacek F., Rashid A. H. A. H., and Karlovsky P. (2019). Small-scale bioreactor for sterile hydroponics and hairy roots: Metabolic diversity and salicylic acid exudation by hairy roots of Hyoscyamus niger. Applied Sciences, 9: 3044.
Kazmi A., Khan M. A., Mohammad S., Ali A., and Ali H. (2019). Biotechnological production of natural calorie free steviol glycosides in Stevia rebaudiana: an update on current scenario. Current Biotechnology, 8: 70-84.
Khalili M., Hasanloo T., Kazemi Tabar S. K., and Rahnama H. (2009). Influence of exogenous salicylic acid on flavonolignans and lipoxygenase activity in the hairy root cultures of Silybum marianum. Cell Biology International, 33: 988-994.
Khan M. A., Ali A., Mohammad S., Ali H., Khan T., Mashwani Z.-u.-R., Jan A., and Ahmad P. (2020). Iron nano modulated growth and biosynthesis of steviol glycosides in Stevia rebaudiana. Plant Cell, Tissue and Organ Culture (PCTOC), 143: 121-130.
Kolb H. C., Finn M. G., and Sharpless K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 40: 2004-2021.
Li J., Li B., Luo L., Cao F., Yang B., Gao J., Yan Y., Zhang G., Peng L., and Hu B. (2020). Increased phenolic acid and tanshinone production and transcriptional responses of biosynthetic genes in hairy root cultures of Salvia przewalskii Maxim. treated with methyl jasmonate and salicylic acid. Molecular Biology Reports, 47: 8565-8578.
Libik-Konieczny M., Michalec-Warzecha Ż., Dziurka M., Zastawny O., Konieczny R., Rozpądek P., and Pistelli L. (2020). Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions. Applied Microbiology and Biotechnology, 104: 5929-5941.
Mejía-Espejel L., Robledo-Paz A., Lozoya-Gloria E., Peña-Valdivia C. B., and Alfredo Carrillo-Salazar J. (2018). Elicitors on steviosides production in Stevia rebaudiana Bertoni calli. Scientia Horticulturae, 242: 95-102.
Moharramnejad S., Azam A. T., Panahandeh J., Dehghanian Z., and Ashraf M. (2019). Effect of methyl jasmonate and salicylic acid on in vitro growth, stevioside production, and oxidative defense system in Stevia rebaudiana. Sugar Tech, 21: 1031-1038.
Murashige T., and Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.
Pankaew C., Supdensong K., Tothong C., Roytrakul S., Phaonakrop N., Kongbangkerd A., and Limmongkon A. (2023). Combining elicitor treatment of chitosan, methyl jasmonate, and cyclodextrin to induce the generation of immune response bioactive peptides in peanut hairy root culture. Plant Science, 331: 111670.
Pistelli L., Giovannini A., Ruffoni B., Bertoli A., and Pistelli L. (2010). Hairy root cultures for secondary metabolites production. In: Giardi M. T., Rea G., and Berra B. (Eds.), Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors. Springer US, Boston, MA, 167-184.
Rakesh B., and Praveen N. (2022). Elicitor and precursor-induced approaches to enhance the in vitro production of L-DOPA from cell cultures of Mucuna pruriens. Industrial Crops and Products, 188: 115735.
Rasouli D., Werbrouck S., Maleki B., Jafary H., and Schurdi-Levraud V. (2021). Elicitor-induced in vitro shoot multiplication and steviol glycosides production in Stevia rebaudiana. South African Journal of Botany, 137: 265-271.
Rattan S., and Warghat A. R. (2023). Comparative analysis of salidroside and rosavin accumulation and expression analysis of biosynthetic genes in salicylic acid and methyl jasmonate elicited cell suspension culture of Rhodiola imbricata (Edgew.). Industrial Crops and Products, 198: 116667.
Sambrook J., and Russell D. W. (2001). Molecular cloning: A laboratory manual. 3rd Edition, Vol. 1, Cold Spring Harbor Laboratory Press, New York.
Serfaty M., Ibdah M., Fischer R., Chaimovitsh D., Saranga Y., and Dudai N. (2013). Dynamics of yield components and stevioside production in Stevia rebaudiana grown under different planting times, plant stands and harvest regime. Industrial Crops and Products, 50: 731-736.
Sharifzadeh Naeini M., Naghavi M. R., Bihamta M. R., Sabokdast M., and Salehi M. (2021). Production of some benzylisoquinoline alkaloids in Papaver armeniacum L. hairy root cultures elicited with salicylic acid and methyl jasmonate. In Vitro Cellular & Developmental Biology - Plant, 57: 261-271.
Shkryl Y. N., Veremeichik G. N., Bulgakov V. P., Tchernoded G. K., Mischenko N. P., Fedoreyev S. A., and Zhuravlev Y. N. (2008). Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli. Biotechnology and Bioengineering, 100: 118-125.
Shuang Z., and Hong T. (2020). Enhanced production of valtrate in hairy root cultures of Valeriana jatamansi Jones by methyl jasmonate, jasmonic acid and salicylic acid elicitors. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48: 839-848.
Silva-Santos L., Neto L. P., Corte-Real N., Sperandio M. V. L., Camara C. A. G., Moraes M. M., and Ulisses C. (2023). Elicitation with methyl jasmonate and salicylic acid increase essential oil production and modulate physiological parameters in Lippia alba (Mill) N.E. Brown (Verbenaceae). Journal of Plant Growth Regulation, 42: 5909-5927.
Simlat M., Ptak A., Jaglarz A., Szewczyk A., Dziurka M., and Gurgul A. (2023). Seeds of Stevia rebaudiana bertoni as a source of plant growth-promoting endophytic bacteria with the potential to synthesize rebaudioside a. International Journal of Molecular Sciences, 24: 2174.
Sivanandhan G., Kapil Dev G., Jeyaraj M., Rajesh M., Arjunan A., Muthuselvam M., Manickavasagam M., Selvaraj N., and Ganapathi A. (2013). Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell, Tissue and Organ Culture (PCTOC), 114: 121-129.
Srivastava S., and Srivastava A. K. (2007). Hairy root culture for mass-production of high-value secondary metabolites. Critical Reviews in Biotechnology, 27: 29-43.
Thakur K., Ashrita, Sood A., Kumar P., Kumar D., and Warghat A. R. (2021). Steviol glycoside accumulation and expression profiling of biosynthetic pathway genes in elicited in vitro cultures of Stevia rebaudiana. In Vitro Cellular & Developmental Biology - Plant, 57: 214-224.
Wasternack C., and Hause B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 111(6): 1021-1058.
Xu S., Zhou W., Pottinger S., and Baldwin I. T. (2015). Herbivore associated elicitor-induced defences are highly specific among closely related Nicotiana species. BMC Plant Biology, 15(1): 1-13.
Yan J., Zhang C., Gu M., Bai Z., Zhang W., Qi T., et al. (2009). The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. The Plant Cell, 21(8): 2220-2236.
Yang J.-W., Wang K.-C., Liang J.-Y., Wang J., Xia T.-S., and Liang Y.-F. (2016). Effects of exogenous MeJA, SA and two kinds of endophytic fungi on physiology and total phenols content of seedlings of Bletilla striata. Zhongguo Zhong Yao Za Zhi, 41: 2794-2801.
Yousefian S., Lohrasebi T., Farhadpour M., and Haghbeen K. (2020). Effect of methyl jasmonate on phenolic acids accumulation and the expression profile of their biosynthesis-related genes in Mentha spicata hairy root cultures. Plant Cell, Tissue and Organ Culture (PCTOC), 142: 285-297.
Zare N., Farjaminezhad R., Asghari-Zakaria R., and Farjaminezhad M. (2014). Enhanced thebaine production in Papaver bracteatum cell suspension culture by combination of elicitation and precursor feeding. Natural Product Research, 28: 711-717.