تحلیل ناپارامتریک پایداری برای ویژگی‌های بیماری سیاهک پنهان گندم

نوع مقاله : Research Paper

نویسندگان

1 موسسه تحقیقات کشاورزی دیم، سازمان تحقیقات، آموزش و ترویج کشاورزی (ARREO)، مراغه، ایران.

2 گروه حفظ نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

3 گروه حفظ نباتات، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کردستان، سازمان تحقیقات، آموزش و ترویج کشاورزی (AREEO)، سنندج، ایران.

4 موسسه تحقیقات کشاورزی دیم، پردیس سرآرود، سازمان تحقیقات، آموزش و ترویج کشاورزی (ARREO)، کرمانشاه، ایران.

5 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران.

چکیده

سیاهک پنهان گندم کاهش قابل توجه عملکرد و کیفیت گندم می شود. این تحقیق با هدف شناسایی ویژگی‌های پایداری مقاومت به سیاهک پنهان گندم در بین 150 ژنوتیپ با استفاده از سه ویژگی شدت بیماری (DS)، ضریب آلودگی (CI) و نوع آلودگی (IT) انجام شد. آزمایشات مزرعه ای در سه منطقه شامل مراغه، کرمانشاه و کردستان طی سال های 99-1397 انجام شد. تحلیل پایداری با استفاده از چهارده آماره ناپارامتریک پایداری انجام شد. نتایج نشان داد که ژنوتیپ‌های G38 و G63 بر اساس آماره های ناپارامتریک پایداری و همچنین مقاومت بالا به بیماری بر اساس شاخصهای DS، CI و IT مطلوب‌ترین ژنوتیپ‌ها بودند. دندروگرام‌های دایره‌ای بر اساس شاخصهای DS، CI وIT ، ژنوتیپ‌های گندم را به ده خوشه مختلف طبقه‌بندی نمودند. گرچه خوشه II بر اساس DS و پایداری ترسیم گردید، ولی برای انتخاب همزمان ژنوتیپ‌های پایدار و همچنین مقاوم بر اساس IT، خوشه IX و خوشه X انتخاب گردید. انتخاب همزمان پایدارترین و همچنین مقاوم ترین ژنوتیپ ها بر اساس CI امکان پذیر نبود. بر اساس تحلیل عاملی آماره های ناپارامتریک پایداری، عامل اول شامل S3، S6، Fox و MR و همچنین DS را از سایر آماره های ناپارامتریک پایداری جدا کرد، در حالی که در نمودار CI، عامل اول آماره های ناپارامتریک پایداری NS1، NS2 و MR را از سایر روش‌ها تفکیک نمود. در شاخص IT، عامل اول IT و همچنین MR و Fox را از روش‌های دیگر و مفهوم پایداری پویا جدا نمود. آماره های ناپارامتریک پایداری Fox و MR را می توان برای تجزیه و تحلیل پایداری استفاده کرد زیرا آنها به طور مداوم با مقاومت و مفهوم پایداری پویا مرتبط هستند.

کلیدواژه‌ها


Akcura M., and Akan K. (2018). Assessment of the reactions of pure lines selected from Turkish bread wheat landraces against bunt disease (Tilletia foetida) with the GGE-biplot method. Plant Genetics and Resource, 16: 325-333.
Al-Maaroof E. M., Ali R. M., Mahmood H. A., and Aziz T. M. (2016). Searching for resistance sources to wheat common bunt disease and efficiency of Bt genes against Tilletia tritici and T. laevis populations. Agriculture Forestry, 61: 175-186.
Aujla S. S., Sharma I., and Singh B. B. (1989). Rating scale for identifying wheat varieties resistant to Neovossia indica (Mitra) Mundkur. Indian Phytopathology, 42: 161-162
Dariaee A., Biglar H. G., and Haghparast R. (2006). Identification of new wheat common bunt pathotypes (Tilletia laevis Kuhn.). Communication in Agriculture and Applied Biological Science, 71: 1093-1101.
Dehghani H., Moghaddam M., Bihamta M. R., Sabaghnia N., and Mohammadi R. (2013). Biplot analysis of diallel data in strip rust of wheat. Australasian Plant Pathology, 42: 601-608.
El-Naimi M., Toubia-Rahme H., and Mamluk O. F. (2000). Organic seed-treatment as a substitute for chemical seed-treatment to control common bunt of wheat. European Journal of Plant Pathology, 106: 433-437.
Flores F., Moreno M. T., and Cubero J. I. (1998). A comparison of univariate and multivariate methods to analyze environments. Field Crop Research, 56: 271-286.
Fox P. N., Skovmand B., Thompson B. K., Braun H. J., and Cormier R. (1990). Yield and adaptation of hexaploid spring triticale. Euphytica, 47: 57-64.
Gauch H. G., Piepho H. P., and Annicchiarico P. (2008). Statistical analysis of yield trials by AMMI and GGE: further considerations. Crop Sciene, 48: 866-889.
Gaudet D. A., Lu Z. X., Leggett F., Puchalski B., and Laroche A. (2007). Compatible and incompatible interactions in wheat involving the Bt-10 gene for resistance to Tilletia tritici, the common bunt pathogen. Phytopathology, 97: 1397-1405.
Huehn M. (1979). Beitrage zur erfassung der phanotypischen stabilitat. EDV Med Biol, 10: 112-117.
Huehn M. (1996). Non-parametric analysis of genotype×environment interactions by ranks. In: Kang M. S., and Gauch H. G. (Eds.), Genotype by environment interaction. CRC Press, Boca Raton, FL, 213-228
Lunzer M., Dumalasová V., Pfatrisch K., Buerstmayr H., and Grausgruber H. (2023). Common bunt in organic wheat: unravelling infection characteristics relevant for resistance breeding. Frontiers in Plant Science, 14: 1264458.
Madden L. V., Paul P. A., and Lipps P. E. (2007). Consideration of nonparametric approaches for assessing genotype-by-environment (G×E) interaction with disease severity data. Plant Disease, 91: 891-900.
Madenova A., Sapakhova Z., Bakirov S., Galymbek K., Yernazarova G., Kokhmetova A., and Keishilov Z. (2021). Screening of wheat genotypes for the presence of common bunt resistance genes. Saudi Journal of Biological Science, 28: 2816-2823.
Mamluk O. F., and Van Slageren M. W. (1993). Resistance to common bunt, yellow rust, leaf rust Septoria tritici blotch in wild einkorn and wild emmer wheat. Phytopathology Mediterranean, 32: 14-19.
Mardoukhi V., Torabi M., and Patpour M. (2005). Reactions of some Irrigated Commercial Wheat Cultivars to Common Bunt Disease Caused by Tilletia laevis. Seed and Plant Journal,21: 617-629.
McNeal F. H., Konzak C. F., Smith E. P., Tate W. S., and Russell T. S. (1971). A uniform system for recording and processing cereal research data. USDA, Agricultural Research Service, Washington, D.C, ARS, 34-121.
Mohammadi N., Safavi S. A., Pouralibaba H. R., Afshari F., Yassaie M., Roustaie M., and Atahoseini S. M. (2023). Screening of dryland bread wheat genotypes against yellow rust through greenhouse and multi-environmental trials. Journal of Crop Protection, 12(1): 43-53.
Pathan A. K., and Park R. F. (2007). Evaluation of seedling and adult plant resistance to stem rust in European wheat cultivars. Euphytica, 155: 87-105.
Ren Z., Zhang W., Wang M., Gao H., Shen H., Wang C., Liu T., Chen W., and Gao L. (2021). Characteristics of the infection of Tilletia laevis Kühn (syn. Tilletia foetida (Wallr.) Liro.) in compatible wheat. Plant Pathology Journal, 37: 437-445.
Russell B. W., and Mills D. (1993). Electrophoretic karyotypes of Tilletia caries, T. controversa, and their F1 progeny: further evidence for conspecific status. Molecular Plant-Microbe Interaction, 6: 66-74.
Sabaghnia N. (2012). Multivariate statistical analysis of genotype×environment interaction in multi-environment trials of breeding programs. Agriculture Forestry, 56: 19-38.
Sabaghnia N. (2015). Identification of the most stable genotypes in multi-environment trials by using nonparametric methods. Acta Agriculture Slovenica, 105: 103-110.
Sabaghnia N. (2016). Nonparametric statistical methods for analysis of genotype×environment interactions in plant pathology. Australasian Plant Pathology, 45: 571-580.
Singh A., Knox R. E., DePauw R. M., Singh A. K., Cuthbert R. D., Kumar S., and Campbell H. L. (2016). Genetic mapping of common bunt resistance and plant height QTL in wheat. Theoretical and Applied Genetics, 129: 243-256.
Thennarasu K. (1995). On certain non-parametric procedures for studying genotype–environment interactions and yield stability. Ph.D. Thesis, P.J. School, IARI, New Delhi.
Yan W., Hunt L. A., Sheng Q., and Szlavnics Z. (2000). Cultivar evaluation and mega‐environment investigation based on the GGE biplot. Crop Science, 40(3): 597-605.
Yao Z., Qin D., Chen D., Liu C., Chen W., Liu T., Liu B., and Gao L. (2019). Development of ISSR-derived SCAR marker and SYBR green I real-time PCR method for detection of teliospores of Tilletia laevis Kühn. Scientific Reports, 9: 17651.