The molecular cloning and structural analysis of a cytochrome P450 (CYP71D500) encoding gene from ajowan (Trachyspermum ammi L.) medicinal plant

Document Type : Research paper

Authors

1 Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Tehran, Iran.

2 Department of Genetics and Plant Breeding, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

3 Department of Plant Bioproducts, Institute of Agricultural Biotechnology (IAB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.

Abstract

Plant phenolic monoterpenes, such as thymol and carvacrol, have a wide range of applications in medicinal, pharmaceutical and other industries. Ajowan is an aromatic medicinal plant from the Apiaceae family with thymol as an active component of its seeds. The seeds of ajowan are valuable for medicinal purposes because their essential oil contains active substances of thymol, carvacrol, γ-terpinene, and p-cymene. Cytochrome P450 (CYP) –related genes have an indispensable role in the biosynthetic pathway of thymol and other substances in ajowan. A cytochrome P450 gene (CYP71D500) with a high expression level was isolated from the ajowan, cloned and sequenced. The sequencing information from the previous RNA-Seq study confirmed that the isolated gene belongs to the plant CYP71 clan, with a 1654 bp length containing two exons and a 115 bp intron. The full-length cDNA of CYP71D500 was also cloned. The sequencing of CYP71D500 cDNA showed the complete homology of CYP71D500 cDNA and exon regions of the CYP71D500 genomic sequence. The sequencing analysis of CYP71D500 cDNA also revealed a mutation that changed isoleucine to valine amino acid. The 3D structural analysis of the enzyme showed that the modified amino acid is not located in the enzyme’s active site. Therefore, this cannot probably affect the synthesis of thymol. The isolated gene and cDNA could be used for the metabolic engineering of ajowan and other medicinal plants with active phenolic monoterpenes. It is also applicable for identifying the different functions of the cloned CYP gene in ajowan or other medicinal plants.

Keywords


Alicandri E., Covino S., Sebastiani B., Paolacci A. R., Badiani M., Sorgonà A., and Ciaffi M. (2022). Monoterpene synthase genes and monoterpene profiles in Pinus nigra subsp. laricio. Plants, 11(3): 449.
Amiripoor M., Sadat-Noori S. A., Shariati J. V., and Soltani Howyzeh M. (2018). Identification of terpenoid backbone biosynthetic pathway genes in Ajowan (Trachyspermum ammi L.) by RNA-Seq. Modern Genetics Journal, 13(1): 133-141. (In Persian)
Amiripour M., Sadat Noori S. A., Shariati V., and Soltani Howyzeh M. (2019). Transcriptome analysis of Ajowan (Trachyspermum ammi L.) inflorescence. Journal of Plant Biochemistry and Biotechnology, 28(4): 496-508.
Amaeze O., Eng H., Horlbogen L., Varma M. V., and Slitt A. (2021). Cytochrome P450 enzyme inhibition and herb-drug interaction potential of medicinal plant extracts used for management of diabetes in Nigeria. European Journal of Drug Metabolism and Pharmacokinetics, 46(3): 437-450.
Amiri S., Fotovat R., Panahi B., Tarinezhad A., and Mohammadi S. A. (2020). Review of abiotic and biotic elicitors’ roles in secondary metabolites biosynthesis of periwinkle (Catharanthus roseus (L.) G. Don). Journal of Medicinal Plants, 19(74): 1-24. (In Persian)
Balusamy S. R., Rahimi S., and Yang D.-C. (2019). Characterisation of squalene-induced PgCYP736B involved in salt tolerance by modulating key genes of abscisic acid biosynthesis. International Journal of Biological Macromolecules, 121: 796-805.
Calla B., and Berenbaum M. R. (2020). Cytochrome P450s in the era of transcriptomics. In: Transcriptomics in Entomological Research, Wallingford UK: CABI, 99-112.
Christie M., Croft L. J., and Carroll B. J. (2011). Intron splicing suppresses RNA silencing in Arabidopsis. The Plant Journal, 68(1): 159-167.
Crocoll C. (2011). Biosynthesis of the phenolic monoterpenes, thymol and carvacrol, by terpene synthases and cytochrome P450s in oregano and thyme. Academic Dissertation, der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena, pp. 143.
De Alvarenga J. F. R., Genaro B., Costa B. L., Purgatto E., Manach C., and Fiamoncini, J. (2023). Monoterpenes: current knowledge on food source, metabolism, and health effects. Critical Reviews in Food Science and Nutrition, 63(10): 1352-1389.
Di Nardo G., and Gilardi G. (2020). Natural compounds as pharmaceuticals: the key role of cytochromes P450 reactivity. Trends in Biochemical Sciences, 45(6): 511-525.
Djemal R., and Khoudi H. (2019). Combination of the endogenous promoter-intron significantly improves salt and drought tolerance conferred by TdSHN1 transcription factor in transgenic tobacco. Plant Physiology and Biochemistry, 139: 435-445.
Emami S., Arumainayagam D., Korf I., and Rose A. B. (2013). The effects of a stimulating intron on the expression of heterologous genes in Arabidopsis thaliana. Plant Biotechnology Journal, 11(5): 555-563.
Froger A., and Hall J. E. (2007). Transformation of plasmid DNA into E. coli using the heat shock method. Journal of Visualised Experiments, (6): 253. DOI: 10.3791/253.
Guo L., Yao H., Chen W., Wang X., Ye P., Xu Z., Zhang S., and Wu H. (2022). Natural products of medicinal plants: biosynthesis and bioengineering in post-genomic era. Horticulture Research, 9: uhac223.
Krause S. T., Liao P., Crocoll C., Boachon B., Förster C., Leidecker F., Wiese N., Zhao D., Wood J. C., Buell C. R., Gershenzon J., Dudareva N., and Degenhardt J. (2021). The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase. Proceedings of the National Academy of Sciences, 118(52): e2110092118.
Kumar M., Tripathi P. K., Ayzenshtat D., Marko A., Forotan Z., and Bocobza, S. E. (2022). Increased rates of gene-editing events using a simplified RNAi configuration designed to reduce gene silencing. Plant Cell Reports, 41(10): 1987-2003.
Lanier E. R., Andersen T. B., and Hamberger B. (2023). Plant terpene specialized metabolism: complex networks or simple linear pathways?. The Plant Journal, 114(5): 1178-1201.
Mirzahosseini S. M., Sadat Noori S. A., Amanzadeh Y., Javid M. G., and Howyzeh M. S. (2017). Phytochemical assessment of some native ajowan (Therachyspermum ammi L.) ecotypes in Iran. Industrial Crops and Products, 105: 142-147.
Nawade B., Kumar A., Maurya R., Subramani R., Yadav R., Singh K., and Rangan P. (2022). Longer duration of active oil biosynthesis during seed development is crucial for high oil yield—lessons from genome-wide in silico mining and rna-seq validation in sesame. Plants, 11(21): 2980.
Nelson D., and Werck‐Reichhart D. (2011). A P450‐centric view of plant evolution. The Plant Journal, 66(1): 194-211.
Niazian M. (2019). Application of genetics and biotechnology for improving medicinal plants. Planta, 249(4): 953-973. DOI: 10.1007/s00425-019-03099-1.
Niazian M., Sadat-Noori S. A., Tohidfar M., Galuszka P., and Mortazavian S. M. M. (2019). Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): an important industrial medicinal plant. Industrial Crops and Products, 132: 29-40.
Niazian M., Sadat Noori S. A., Tohidfar M., and Mortazavian S. M. M. (2017). Essential oil yield and agro-morphological traits in some iranian ecotypes of ajowan (Carum copticum L.). Journal of Essential Oil Bearing Plants, 20(4): 1151-1156. DOI: 10.1080/0972060X.2017.1326849.
Nomani M., Sadat Noori S. A., Tohidfar M., and Ramshini H. (2019). Overexpression of TPS2 gene to increase thymol content using Agrobacterium tumefaciens-mediated transformation in Trachyspermum ammi (Qom ecotype). Industrial Crops and Products, 130: 63-70.
Palatinszky M., Nikolausz M., Sváb D., and Márialigeti K. (2011). Preferential ligation during TA-cloning of multitemplate PCR products—A factor causing bias in microbial community structure analysis. Journal of Microbiological Methods, 85(2): 131-136.
Pateraki I., Heskes A. M., and Hamberger B. (2015). Cytochromes P450 for terpene functionalisation and metabolic engineering. In: Schrader J., Bohlmann J. (Eds.), Biotechnology of Isoprenoids, Advances in Biochemical Engineering/Biotechnology, Vol. 148, Springer, Cham, 107-139. DOI: https://doi.org/10.1007/10_2014_301.
Ragland D. A., Nalivaika E. A., Nalam M. N., Prachanronarong K. L., Cao H., Bandaranayake R. M., Cai Y., Kurt-Yilmaz N., and Schiffer C. A. (2014). Drug resistance conferred by mutations outside the active site through alterations in the dynamic and structural ensemble of HIV-1 protease. Journal of the American Chemical Society, 136(34): 11956-11963.
Sadat-Noori S. A., Soltani Howyzeh M., and Moradi N. (2020). Ajowan. In book: Carrots and Related Apiaceae Crops, Wallingford UK: CABI, 231-239. DOI: 10.1079/9781789240955.0231.
Sadat-Noori S. A., Niazian M., Soltani Howyzeh M., and Amiripoor M. (2018). Ajowan medicinal plant (botany, medicinal properties, agronomy, plant breeding and biotechnology). Academic Center of Education Culture and Research,Tehran Branch, ISBN: 978-600-133-307-1. (In Persian)
Sethi A., Bhandawat A., and Pati P. K. (2022). Engineering medicinal plant-derived CYPs: a promising strategy for production of high-valued secondary metabolites. Planta, 256(6): 1-14.
Sika K. C., Kefela T., Adoukonou-Sagbadja H., Ahoton L., Saidou A., Baba-Moussa L., Baptiste L. J., Kotconi S. O., and Gachomo E. W. (2015). A simple and efficient genomic DNA extraction protocol for large scale genetic analyses of plant biological systems. Plant Gene, 1: 43-45.
Singh A., Panwar R., Mittal P., Hassan M. I., and Singh I. K. (2021). Plant cytochrome P450s: Role in stress tolerance and potential applications for human welfare. International Journal of Biological Macromolecules, 184: 874-886.
Skorupski K., and Taylor R. K. (1996). Positive selection vectors for allelic exchange. Gene, 169(1): 47-52.
Soltani Howyzeh M., Sadat Noori S. A., and Shariati J. V. (2018a). Essential oil profiling of Ajowan (Trachyspermum ammi) industrial medicinal plant. Industrial Crops and Products, 119: 255-259.
Soltani Howyzeh M., Sadat Noori S. A., Shariati J. V., and Amiripour M. (2018b). Comparative transcriptome analysis to identify putative genes involved in thymol biosynthesis pathway in medicinal plant Trachyspermum ammi L. Scientific Reports, 8(1): 13405.
Soltani Howyzeh M., Sadat Noori S. A., Shariati J. V., and Niazian M. (2018c). Essential oil chemotype of Iranian ajowan (Trachyspermum ammi L.). Journal of Essential Oil Bearing Plants, 21(1): 273-276.
Trindade H., Pedro L. G., Figueiredo A. C., and Barroso J. G. (2018). Chemotypes and terpene synthase genes in Thymus genus: State of the art. Industrial Crops and Products, 124: 530-547.
Vasil V., Clancy M., Ferl R. J., Vasil I. K., and Hannah L. C. (1989). Increased gene expression by the first intron of maize shrunken-1 locus in grass species. Plant Physiology, 91(4): 1575-1579.
Wang X., Pereira J. H., Tsutakawa S., Fang X., Adams P. D., Mukhopadhyay A., and Lee T. S. (2021). Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450. Metabolic Engineering, 64: 41-51.
Williams D., and De Luca V. (2023). Plant cytochrome P450s directing monoterpene indole alkaloid (MIA) and benzylisoquinoline alkaloid (BIA) biosynthesis. Phytochemistry Reviews, 22(2): 309-338.
Yang J., Yan R., Roy A., Xu D., Poisson J., and Zhang Y. (2015). The I-TASSER Suite: protein structure and function prediction. Nature Methods, 12(1): 7-8.
Zhou M.-Y., and Gomez-Sanchez C. E. (2000). Universal TA cloning. Current Issues in Molecular Biology, 2: 1-8.