نقش زیستی ترکیبات گلیکوزیدی یونجه (Medicago sativa L.) به عنوان عامل مقاومت در برابر حمله آفت سرخرطومی برگ (Hypera postica Gyll.)

نوع مقاله : Short Communication

نویسندگان

1 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

2 دانشکده پزشکی، دانشگاه علوم پزشکی همدان، همدان، ایران.

3 گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

چکیده

پس از شناسایی ژنوتیپ‌های مقاوم، نیمه حساس و حساس از بین 42 ژنوتیپ یونجه (Medicago sativa L.) بر اساس صفات مزرعه‌ای، تعداد 9 ژنوتیپ انتخات گردیدند. ساپونین ناشی از سوسپانسیون یکنواخت بافت یونجه در شرایط اوج هجوم مزرعه‌ای آفت سرخرطومی برگ یونجه (Hypera postica Gyll.)، با استفاده از متانول استخراج و بعد به وسیله بوتانول اشباع از آب خالص سازی شد. محلول حاصل به وسیله آنزیم فعال استخراج شده از روده میانی آفت و آنزیم غیر فعال شده توسط حرارت، خوابانیده شد. تفکیک مواد متابولیکی ثانویه گلیکوسایدی استخراج شده از گیاه یونجه و همچنین، بررسی فعالیت هیدرولیزی آنزیمی آفت بر روی گلیکوساید های ژنوتیپ‌ها، به وسیله کروماتوگرافی لایه نازک مورد مطالعه قرار گرفت. نتایج آزمایش هضم آنزیمی از طریق TLC مشخص نمود که به غیر از اپیژنین گلیکوساید1، سایر ترکیب‌های موجود در محلول هضم شدند. بنابراین، باند فلاونوئیدی اپیژنین گلیکوزاید1 در تمامی 5 ژنوتیپ مقاوم از جمله ژنوتیپ‌های تک بوته و رنجر دارای غلظت بالا و تقریبا مشابه بود و با حفظ پایداری ساختمان مولکولی، در نقطه 0.45 = Rf تفکیک و تجمع یافت. در دو ژنوتیپ حساس پلی کراس شیراز و محلی نیشابوری، ، باند ساپونینی سویا ساپونین 1 در نقطه 0.37 = Rf بالاترین تراکم را داشت. در شرایط طبیعی مزرعه و در زمان تنش بیولوژیکی، کمترین غلظت ساپونین، سویاساپونین 1 و بالاترین غلظت فلاونوئید، اپیژنین گلیکوساید 1، نقش بیولوژیکی قابل توجهی در جهت مقاومت به آفت و کاهش میزان خسارت ارقام مورد مطالعه داشت‌.

کلیدواژه‌ها


Agrell J., Anderson P., Oleszek W., Stochmal A., and Agrell C. (2004). Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton. Journal of Chemical Ecology, 30: 2309-2324. DOI: https://doi.org/10.1023/B:JOEC.0000048791.74017.93.
Armah C. N., Mackie A. R., Roy C., Price K., Osbourn A. E., Bowyer P., and Ladha S. (1999). The membrane-permeabilizing effect of avenacin A-1 involves the reorganization of bilayer cholesterol. Biophysical Journal, 76: 281-290. DOI: https://doi.org/10.1016/S0006-3495(99)77196-1.
Augustin J. M., Kuzina V., Sven B., Andersen B., and Soren B. (2011). Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry, 72: 435-457. DOI: https://doi.org/10.1016/j.phytochem.2011.01.015.
Balestrazzi A., Agoni V., Tava A., Avato P., Biazzi E., Raimondi E., Macovei A., and Carbonera D. (2011). Cell death induction and nitric oxide biosynthesis in white poplar (Populus alba) suspension cultures exposed to alfalfa saponins. Physiologia Plantarum, 141: 227-238. DOI: 10.1111/j.1399-3054.2010.01436.x.
Bede J. C., Musser R. O., Felton G. W., and Korth K. L. (2006). Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis. Plant Molecular Biology, 60: 519-531. DOI: https://doi.org/10.1007/s11103-005-4923-y.
Berrang B., Davis K. H. J., Wall M. E., Hanson C. H., and Pedersen M. E. (1974). Saponins of two alfalfa cultivars. Phytochemistry, 13: 2253-2260. DOI: https://doi.org/10.1016/0031-9422(74)85037-5.
Bialy Z., Jurzysta M., Mella M., and Tava A. (2004). Triterpens Saponins from Aerial Parts of Medicago arabical. Journal of Agricultural and Food Chemistry, 52: 1095-1099. DOI: DOI:10.1021/jf030446+.
Bialy Z., Jurzysta M., Oleszek W., Piacente S., and Pizza C. (1999). Saponins in alfalfa (Medicago sativa L.), root and their structural elucidation. Journal of Agricultural and Food Chemistry, 47: 3185-3192. DOI: DOI:10.1021/jf9901237.
Bowyer P., Clarke B. R., Lunness P., Daniels M. J., and Osbourn A. E. (1995). Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science, 267: 371-374. DOI: 10.1126/science.7824933.
Chandra A., and Chandra Pandey K. (2008). Effect of proteinase inhibitors on Indian alfalfa weevil (Hypera postica Gyll.) growth and development. Acta Physiologiae Plantarum, 30: 501-505. DOI: 10.1007/s11738-008-0147-5.
Dixon R. A., Harrison M. J., and Lamb C. J. (1994). Early events in the activation of defense response in plant. Annual Review of Phytopathology, 32: 479-501. DOI: https://doi.org/10.1146/annurev.py.32.090194.002403.
Goławska S., Leszczynski B., and Oleszek W. (2006). Effect of low and high-saponin lines of alfalfa on pea aphid. Journal of Insect Physiology, 52: 737-743. DOI: https://doi.org/10.1016/j.jinsphys.2006.04.001.
Golawska S., Lukasik I., Wojcicka A., and Sytykiewicz H. (2012). Relationship between saponin content in alfalfa and aphid development. Acta Biologica Cracoviensia Series Botanica, 54(2): 39-46. DOI: 10.2478/v10182-012-0022-y.
Golawska S., Lukasik I., Golawska A., Kapusta I., and Janda B. (2010). Alfalfa (Medicago sativa L.) apigenin glycosides and their effect on the pea aphid (Acyrthosiphon pisum). Polish Journal of Environmental Studies, 19(5): 913-919.
Hare J. D. (2002). Seasonal variation in the leaf resin components of Mimulus aurantiacus. Biochemical Systematics and Ecology, 30: 709-720. DOI: https://doi.org/10.1016/S0305-1978(01)00144-2.
Inaba K., Ebihara K., Senda M., Yoshino R., Sakuma Ch., Koiwai K., Takaya D., Watanabe Ch., Watanabe A., Kawashima Y., Fukuzawa K., Imamura R., Kojima H., Okabe T., Uemura N., Kasai Sh., Kanuka H., Nishimura T., Watanabe K., Inoue H., Fujikawa Y., Honma T., Hirokawa T., Senda T., and Niwa R. (2022). Molecular action of larvicidal flavonoids on ecdysteroidogenic glutathione S-transferase Noppera-bo in Aedes aegypti. BMC Biology, 20(1): 43. DOI: 10.1186/s12915-022-01233-2.
Jurzysta M., and Waller G. R. (1996). Antifungal and haemolytic activity of aerial parts of alfalfa (Medicago) species in relation to saponin composition. In: Waller, G. R., Yamasaki, K. (Eds) Saponins Used in Traditional and Modern Medicine. Advances in Experimental Medicine and Biology, Vol. 404, Springer, Boston, MA. DOI: https://doi.org/10.1007/978-1-4899-1367-8_47.
Kariyat R. R., Gaffoor I., Sattar S., Dixon C. W., Frock N., Moen J., Moraes C. M. D., Mescher M. C., Thompson G. A., and Chopra S. (2019). Sorghum 3-deoxyanthocyanidin flavonoids confer resistance against corn leaf aphid. Journal of Chemical Ecology, 45: 502-514. DOI: https://doi.org/10.1007/s10886-019-01062-8.
Krishnamurthy P., Tsukamoto Ch., Yang S. H., Lee J. D., and Chung G. (2012). An improved method to resolve plant saponins and sugars by TLC. Chromatographia, 75: 1445-1449. DOI: https://doi.org/10.1007/s10337-012-2340-3.
Lahtinen M., Kapari L., Ossipov V., Salminen J. P., Haukaioja E., and Pihlaja K. (2005). Biochemical transformation of birch leaf phenolics in larvae of six species of sawflies. Chemoecology, 15: 153-159. DOI: https://doi.org/10.1007/s00049-005-0307-7.
Lin F., and Wang R. (2010). Hemolytic mechanism of dioscin proposed by molecular dynamics simulations. Journal of Molecular Modeling, 16: 107-118. DOI: https://doi.org/10.1007/s00894-009-0523-0.
Mazahery-Laghab H. (1997). Endogenous insect pest resistance factors; engineering for enhanced resistance. Ph.D Thesis, University of Durham, UK.
Mazahry-Laghab H., Yazdi-Samadi B., Bagri M., and Baghri A. R. (2011). Alfalfa (Medicago sativa L.) shoot saponins: identification and bio-activity by the assessment of aphid feeding. British Journal of Nutrition, 105: 62-70. DOI: 10.1017/S0007114510003120.
Minic Z., and Jouanin L. (2006). Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiology and Biochemistry, 44: 435-449. DOI: https://doi.org/10.1016/j.plaphy.2006.08.001.
Nahrstedta A. (1989). The significance of secondary metabolites for interaction between plants and insects. Planta Medica, 55(4):333-338. DOI: 10.1055/s-2006-962023.
Nukmal N., Rosa E., Kanedi A., and Kanedi M. (2017). Insecticidal effects of the flavonoid-rich fraction of leaves extract of gamal (Gliricidia sepium) on the coffee mealybugs (Planococcus citri Risso.). Annual Research & Review in Biology, 16(6): 1-9. DOI: 10.9734/ARRB/2017/36209.
Oleszek W. (2000). Alfalfa saponins: chemistry and application. In: Phytochemicals as Bioactive Agents. Technomic Publishing Company, Inc., USA, 167-188.
Oleszek W. (1996). Alfalfa saponins: structure, biological activity and chemo-taxonomy. In: Waller G. R., and Yamasaki K. (Eds.), Saponins Used in Food and Agriculture, Plenum Press, New York, USA, 155-170.
Osbourn A. (1996). Saponins and plant defence a soap story. Trends in Plant Science, 1: 4-9. DOI: https://doi.org/10.1016/S1360-1385(96)80016-1.
Pecetti L., Tava A., Romani M. D., Benedetto M. G., and Corsi P. (2006). Variety and environment effects on the dynamics of saponins in lucerne (Medicago sativa L.). European Journal of Agronomy, 25: 187-192. DOI: https://doi.org/10.1016/j.eja.2006.04.013.
Shah A., and Smith D. L. (2020). Flavonoids in agriculture: chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy, 10: 1209. DOI: https://doi.org/10.3390/agronomy10081209.
Simmonds M. S. J. (2001). Importance of flavonoids in insect plant interactions: feeding and oviposition. Phytochemistry, 56: 245-252. DOI: https://doi.org/10.1016/S0031-9422(00)00453-2.
Simmonds M. S. J. (2003). Flavonoid-insect interactions: recent advances in our knowledge. Phytochemistry, 64(1): 21-30. DOI: 10.1016/S0031-9422(03)00293-0.
Schittco U., Burghardt F., Fiedler K., Wray V., and Proksch P. (1999). Sequestration and distribution of flavonoids in the common blue butterfly Polyommatus icarus reared on Trifolium repens. Phytochemistry, 51: 609-614. DOI: https://doi.org/10.1016/S0031-9422(98)00746-8.
Spaink H. P. (1995). The molecular basis of infection and nodulation by rhizobia: The ins and outs of sympathogenesis. Annual Review of Phytopathology, 33: 345-368. DOI: https://doi.org/10.1146/annurev.py.33.090195.002021.
Tava A., and Avatob P. (2006). Chemical and biological activity of triterpene saponins from Medicago species. Natural Product Communications, 1(12): 1159-1180. DOI: https://doi.org/10.1177/1934578X0600101217.
Tucak M., Popovic S., and Cupic T. (2009). Karakterizacija I morfoagronomska evaluacija germplazme lucerne. In: Proceedings of the 44th Croatian & 4th International Symposium on Agriculture, Opatija, 16-20 February, Maric S., and Loncaric Z. (Eds.) Faculty of Agriculture University of J.J. Strossmayer in Osijek, Osijek, 400-404.
Vatanparast M., and Hosseininave V. (2010). Digestive amylase and pectinase activity in the larvae of alfalfa weevil Hypera postica (Coleoptera: Curculionidae). Entomological Research, 40: 328-335. DOI: https://doi.org/10.1111/j.1748-5967.2010.00305.x.
Vanloon J. J. A., Wang C. Z., Nielsen J. K., Gols R., and Qiu Y. T. (2002). Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: Chemoreception and behavior. Entomologia Experimentalis et Applicata, 104(1): 27-34. DOI: https://doi.org/10.1046/j.1570-7458.2002.00987.x.
Waksmundzka-Hajnos M., Sherma J., and Kowalska T. (Eds.). (2008). Thin layer chromatography in phytochemistry. CRC Press, pp. 896. DOI: https://doi.org/10.1201/9781420046786.
Wink M. (2013). Evolution of secondary metabolites in legumes (Fabaceae). South African Journal of Botany, 89: 164-175. DOI: https://doi.org/10.1016/j.sajb.2013.06.006.
Zaynab M., Sharif Y., Abbas S., ZohaibAfzal M., Qasim M., Khalofah A., Ansari M. J., Khan K. A., Tao L., Li S. (2021). Saponin toxicity as key player in plant defense against pathogens. Toxicon, 193: 21-27. DOI: 10.1016/j.toxicon.2021.01.009.