Identification of sources of resistance to yellow rust in barley landraces grown in the northwest regions of Iran

Document Type : Research paper

Authors

1 Department of Genetics and National Plant Gene Bank of Iran, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

2 Agriculture and Natural Resources Research Center of Ardebil, Agricultural Research, Education and Extension Organization (AREEO), Ardebil, Iran.

3 Department of Cereal Research, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

Abstract

Barley yellow rust is one of the important barley diseases in the world. However, the importance of this disease has recently increased in Iran. The main aim of the present study was to identify the sources of resistance to this disease in a collection of Iranian barley genotypes provided from the National Plant Gene Bank of Iran (NPGBI). For this purpose, a set of 128 accessions of the north and northwest regions of Iran were assessed in terms of resistance components such as disease severity, infection type and coefficient of infection under natural incidence of the disease in the field of Ardebil Research Station as a hotspot region for barley yellow rust during 2019-2022 cropping seasons. The results indicated a considerable genetic diversity among the tested genetic materials in response to this disease. A moderate correlation was observed between the evaluations of different years. The accessions were separated into five groups using cluster analysis, and the second group with 41 members with the lowest infection coefficient average was identified as the most resistant group. The results of this research showed the high capacity of the collection to identify sources of resistance to barley yellow rust disease. The identified resistant germplasm can be used in breeding programs for resistance to this disease.

Keywords


Allison O. C., and Isenbeck K. (1930). Biological specialization of Puccinia glumnarum tritici Eriksson and Henning. Phytopathologische Zeitschrift, 2: 87-98.
Bai Q., Liu T., Wan A., Wang M., See D. R., and Chen X. (2022). Changes of barley stripe rust populations in the unites states from 1993 to 2017. Phytopathology, 112(11): 2391-2402. DOI: 10.1094/PHYTO-04-22-0135-R.
Baik B. K., and Ullrich S. E. (2008). Barley for food: characteristics, improvement, and renewed interest. Journal of Cereal Science, 48: 233–242. DOI: https://doi.org/10.1016/j.jcs.2008.02.002.
Bekele B., Abraham A., Kumari S. G., Ahmed S., Fininsa C., and Yusuf A. (2019). Ethiopian barley landraces: useful resistant sources to manage Barley yellow dwarf and other foliar diseases constraining productivity. European Journal of Plant Pathology, 154(4): 873-886. DOI: https://doi.org/10.1007/s10658-018-01644-4.
Çelik Oğuz A., and Karakaya A. (2021). Genetic diversity of barley foliar fungal pathogens. Agronomy, 11(3): 434. DOI: 10.3390/agronomy11030434.
Chen X. M., and Wood D. A. (2004). Control of stripe rust of spring wheat with foliar fungicides, 2003. Fungicide and Nematicide Test [serial online], Report 59: CF022. The American Phytopathological Society, St. Paul, Min.
Chen X. M., and Line R. F. (2001). Races of barley stripe rust in the United States. Barley Newsl. 44, On-line at: http://grain.iouv.inra.fr/ggpages/BarlevNewsletter/44/WashReport2.html.
Chen X. M., and Penman L. (2005). Races of Puccinia striiformis f. sp. hordei, the pathogen of barley stripe rust in the United States in 2004. Barley Genetics Newsletter, 35: 23-26.
Dubin H. J., and Stubbs R. W. (1986). Epidemic spread of barley stripe rust in South America. Plant Disease, 70(2): 141-144.
Esfandiari E. (1947). Les rouilles de cereales en Iran. Applied Entomology and Phytopathology, 4: 67-76.
Gyawali S., Mamidi S., Chao S., Bhardwaj S. C., Shekhawat P. S., Selvakumar R., Gangwar O. P., and Verma R. P. S. (2021). Genome-wide association studies revealed novel stripe rust resistance QTL in barley at seedling and adult-plant stages. Euphytica, 217(1): 1-18. DOI: https://doi.org/10.1007/s10681-020-02728-1.
Hernandez J., Del Blanco A., Filichkin T., Fisk S., Gallagher L., Helgerson L., Meints B., Mundt C., Steffenson B., and Hayes P. (2020). A genome-wide association study of resistance to Puccinia striiformis f. sp. hordei and P.graminis f. sp. tritici in barley and development of resistant germplasm. Phytopathology, 110(5): 1082-1092. DOI: 10.1094/PHYTO-11-19-0415-R.
Hudzenko V. M., Demydov O. A., Polishchuk T. P., Fedorenko I. V., Lysenko A. A., Fedorenko M. V., Siroshtan A. A., Yurchenko T. V., and Shevchenko T. V. (2021). Comprehensive evaluation of spring barley yield and tolerance to abiotic and biotic stresses. Ukrainian Journal of Ecology, 11(8): 48-55.
Jombart T., Devillard S., and Balloux F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11(1): 94. DOI: 10.1186/1471-2156-11-94.
Kanwar H., Shekhawat P. S., and Chandrawat B. S. (2022a). Effect of plant extracts against stripe rust of barley caused by Puccinia striiformis f. sp. hordei. Ecology, Environment and Conservation Journal, 28: S544-S547.
Kanwar H., Shekhawat P. S., and Singh B. (2022b). Effect of age of host on development of stripe rust of barley. The Pharma Innovation Journal, 11(2s): 636-638.
Karkee A., Ghimire K. H., Joshi B. K., and Shrestha J. (2022). Evaluation of naked barley (Hordeum vulgare L.) landraces for yield and yellow rust resistance. Journal of Agriculture and Food Research, 9: 100319. DOI: 10.1016/j.jafr.2022.100319.
Kumar K., Xi K., Turkington T. K., Aljarrah M., and Capettini F. (2020a). Yield responses in spring wheat and barley cultivars, varying in stripe rust resistance in central Alberta. Canadian Journal of Plant Pathology, 42(3): 344-352. DOI: 10.1080/07060661.2019.1680443.
Kumar V., Shekhawat P. S., Vishwakarma S. R., Bharadwaj S. C., Kumar S., Kharub A. S., and Singh G. P. (2020b). Identification of resistant sources against spot blotch and stripe rust of barley. Journal of Cereal Research, 12(1): 50-54. DOI: 10.25174/2582-2675/2020/88973.
Line R. F., and Qayoum A. (1992). Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968-87. United States Department of Agriculture, Technical Bulletin No.1788, pp. 44.
Nevo E. (2013). Evolution of wild barley and barley improvement. Advance in barley sciences. In: Proceedings of the 11th International Barley Genetics Symposium, Zhang G., Li C., and Liu X.  (Eds), Dordrecht: Zhejiang University Press and Springer Science C Business Media, 1-23
Niks R. E., and Rubiales D. (2002). Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica, 124(2): 201-216. DOI: https://doi.org/10.1023/A:1015634617334.
Peterson R. F., Campbell A. B., and Hannah A. E. (1948). A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 26(5): 496-500. DOI: 10.1139/cjr48c-033.
Richardson K. L., Vales M. I., Kling J. G., Mundt C. C., and Hayes P. M. (2006). Pyramiding and dissecting disease resistance QTL to barley stripe rust. Theoretical and Applied Genetics, 113(3): 485-495. DOI: 10.1007/s00122-006-0314-2.
Rodríguez-García M. F., González-González M., Huerta-Espino J., and Solano-Hernández S. (2021). Fungicides evaluation against yellow rust (Puccinia striiformis f. sp. hordei) in six barley cultivars. Revista Mexicana De Fitopatología, 39(3): 414-434. DOI: https://doi.org/10.18781/r.mex.fit.2106-5.
Roelfs A. P. (1992). Rust diseases of wheat: concepts and methods of disease management. CIMMYT, pp. 81. ISBN: 968-6127-47-X.
Rothwell C. T., Singh D., van Ogtrop F., Sørensen C., Fowler R., Germán S., Park R. F., and Dracatos P. (2019). Rapid phenotyping of adult plant resistance in barley (Hordeum vulgare) to leaf rust under controlled conditions. Plant Breeding, 138(1): 51-61. DOI: 10.1111/pbr.12660.
Safavi S. A., Ahari A. B., Afshari F., and Arzanlou M. (2013). Slow rusting resistance in Iranian barley cultivars to Puccinia striiformis sp. hordeiJournal of Plant Protection Research, 53(1): 5-11. DOI: 10.2478/jppr-2013-0001.
Singh J., Gangwar O. P., Kumar S., Shekhawat P. S., Kumar D., Kumar V., Kaur J., Pandey M. K., Devlash R., Kharub A. S., and Singh G. P. (2019). Identification of yellow rust resistance sources in advanced breeding lines of barley (Hordeum vulgare L.). Journal of Cereal Research, 11(2): 160-165. DOI: 10.25174/2249-4065/2019/85076.
Singla P., Bhardwaj R. D., Kaur S., and Kaur J. (2020a). Stripe rust induced defense mechanisms in the leaves of contrasting barley genotypes (Hordeum vulgare L.) at the seedling stage. Protoplasma, 257(1): 169-181. DOI: 10.1007/s00709-019-01428-5.
Singla P., Bhardwaj R. D., Kaur S., Kaur J., and Grewal S. K. (2020b). Metabolic adjustments during compatible interaction between barley genotypes and stripe rust pathogen. Plant Physiology and Biochemistry, 147: 295-302. DOI: 10.1016/j.plaphy.2019.12.030.
Verma R. P., Selvakumar R., Gangwar O. P., Shekhawat P. S., Bhardwaj S. C., Rehman S., Sharma‐Poudyal D., and Gyawali S. (2018). Identification of additional sources of resistance to Puccinia striiformis f. sp. hordei (PSH) in a collection of barley genotypes adapted to the high input condition. Journal of Phytopathology, 166(5): 355-364. DOI: 10.1111/jph.12693.
Visioni A., Gyawali S., Selvakumar R., Gangwar O. P., Shekhawat P. S., Bhardwaj S. C., Al-Abdallat A. M., Kehel Z., and Verma R. P. (2018). Genome wide association mapping of seedling and adult plant resistance to barley stripe rust (Puccinia striiformis f. sp. hordei) in India. Frontiers in Plant Science, 9: 520. DOI: 10.3389/fpls.2018.00520.
Zadoks J. C. (1961). Yellow rust on wheat, studies in epidemiology and physiologic specialization. Tijdschrift Over Plantenziekten, 67: 69-256. DOI: https://doi.org/10.1007/BF01984044.
Zadoks J. C. (1965). Epidemiology of wheat rust in Europe. FAO Plant Protection Bulletin, 13: 97-108.