Appraising of barley promising lines relying on high grain yield and desirable agronomy traits in rainfed conditions using SIIG and ASIIG techniques

Document Type : Research paper

Authors

1 Department of Genetics and Plant Breeding, Imam Khomeini International University, Qazvin, Iran.

2 Kohgiluyeh-Boyerahmad Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Yasuj, Iran.

Abstract

This study aimed to investigate the genetic diversity of 140 barley advanced lines, using Selection Index of Ideal Genotype (SIIG) and Adjusted Selection Index of Ideal Genotype (ASIIG) indicators for introduction and cultivation of suitable lines in rainfed conditions. The highest coefficient of variation was related to the type of spike, flag leaf area, seeds per spike, peduncle length, flag leaf width, and early growth vigor. The stepwise regression showed that the early growth vigor, 1000-seeds weight, spike type, days to heading, plant height, number of seeds per spike, and flag leaf length were the most critical components, which affect the grain yield under the rainfed conditions. The results of SIIG showed that lines 4, 43, 47, 40, 70, 96, 137, 3, 57, and 45 were the best lines with the highest SIIG values. The SIIG index divided all lines into seven groups; the average grain yield of lines in groups I and II were higher than the average grain yield of control cultivars and the other groups. According to ASIIG plots, lines 47, 3, 43, 45, 137, 96, and 40 were placed in the ideal quarter. Finally, the SIIG and ASIIG were compatible in selecting the best lines. ASIIG was more suitable for separating the ideal lines, because it participated all traits commensurate with their importance in the end product quantity and quality.

Keywords


Abdel-Ghani A. H., Neumann K., Wabila C., Sharma R., Dhanagond S., Owais S. J., Borner A., Graner A., and Kilian B. (2015). Diversity of germination and seedling traits in a spring barley (Hordeum vulgare L.) collection under drought simulated conditions. Genetic Resources and Crop Evolution, 62(2): 275-292.‏
Addisu A., and Shumet T. (2015). Variability, heritability and genetic advance for some yield and yield related traits in barley (Hordeum vulgare L.) landraces in Ethiopia. International Journal of Plant Breeding and Genetics, 9(2): 68-76.‏
Alemayehu F., and Parlevliet J. E. (1997). Variation between and within Ethiopian barley landraces. Euphytica, 94(2): 183.‏
Al-Karaki G. N. (2001). Germination, sodium, and potassium concentrations of barley seeds as influenced by salinity. Journal of Plant Nutrition, 24(3): 511-522.‏
Brachi B., Meyer C. G., Villoutreix R., Platt A., Morton T. C., Roux F., and Bergelson J. (2015). Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 112(13): 4032-4037.‏
Derbew S., Elias U., and Hussein M. (2013). Genetic variability in barley (Hordeum vulgare L.) landrace collections from southern Ethiopia. International Journal of Science and Research, 12(2): 125-131.‏
Draper N. R., and Smith H. (1998). Applied regression analysis. (3th Ed.). New York: Wiley, (Chapter 6).
Drikvand R., Samiei K., and Hossinpor T. (2011). Path coefficient analysis in hull-less barley under rainfed condition. Australian Journal of Basic and Applied Sciences, 5(12): 277-279.‏
Ebrahim S., Shiferaw E., and Hailu F. (2015). Evaluation of genetic diversity in barley (Hordeum vulgare L.) from Wollo high land areas using agromorphological traits and hordein. African Journal of Biotechnology, 14(22): 1886-1896.‏
Evans L. T., and Fischer R. A. (1999). Yield potential: its definition, measurement, and significance. Crop Science, 39(6): 1544-1551.‏
FAO. (2015). FAOSTAT - Food and Agriculture Organization of the United Nations. [Online] Available: http://faostat3.fao.org (Verified in Feb 2, 2017).
Haghighatnia H., and Alhani F. (2020). Evaluation of irrigation water salinity tolerance indices in new cultivars and lines of safflower. Air, Iranian Soil and Water Research, 51(7):1811-1821. (In Persian with English Abstract).‏
Haseneyer G., Stracke S., Paul C., Einfeldt C., Broda A., Piepho H. P., Graner A., and Geiger H. H. (2010). Population structure and phenotypic variation of a spring barley world collection set up for association studies. Plant Breeding, 129(3): 271-279.‏
Hwang C. L., and Yoon K. P. (1981). Lecture notes in economics and mathematical systems. In: Multiple Attribute Decision Making, Springer-Verlag Berlin Heidelberg‏, 58-191.
Jabbari M., Fakheri B. A., Aghnoum R., Nezhad N. M., Ataei R., and Koochakpour Z. (2019). Association mapping of morphological and physiological traits of flag leaf related to drought tolerance in barley. Journal of Neotropical Agriculture, 6(2): 7-18.‏
Jalata Z., Ayana A., and Zeleke H. (2011). Variability, heritability and genetic advance for some yield and yield related traits in Ethiopian Barley (Hordeum vulgare L.) landraces and crosses. International Journal of Plant Breeding and Genetics, 5(1): 44-52.‏
Kerwin R., Feusier J., Corwin J., Rubin M., Lin C., Muok A., Larson B., Joseph B., Francisco M., Weinig C., Kliebenstein D., and Copeland D. (2015). Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness. Elife, 4: e05604.‏
Leilah A. A., and Al-Khateeb S. A. (2005). Statistical analysis of wheat yield under drought conditions. Journal of Arid Environments, 61(3): 483-496.‏
Mishra B. N., and Shivakumar B. G. (2000). Barley in: techniques and management of field crop production. Agrobios. Rothere, PS (Ed.), India.‏
Mohtashami R. (2015). The correlation study of important barley agronomic traits and grain yield by path analysis. In Biological Forum, 7(1): 1211-1219.
Moqaddaszadeh Ahrab M., Asghari Z., Hassanpanah D., and Nasser Z. (2015). Assessing the interaction of genotype×environment of potato genotypes (Solanum tuberosum L.) using parametric statistics and the selection index of ideal genotype (SIIG) technique. The First National Conference on Modern Ideas in Agriculture and Natural Resources, 14 November, Ardabil, Iran, 887-891.
Naceur A. B., Chaabane R., El-Faleh M., Abdelly C., Ramla D., Nada A., and Sakr M. (2012). Genetic diversity analysis of North Africa’s barley using SSR markers. Journal of Genetic Engineering and Biotechnology, 10(1): 13-21.‏
Newman C. W., and Newman R. K. (2006). A brief history of barley foods. Cereal Foods world, 51(1): 4-7.‏
Ramzi E., Asghari A., Khomari S., and Mohammaddoust e Chamanabad H. (2018). Investigation of durum wheat (Triticum turgidum L. subsp. durum Desf) lines for tolerance to aluminum stress condition. Journal of Crop Breeding, 10(25): 63-72.‏
Shakhatreh Y., Haddad N., Alrababah M., Grando S., and Ceccarelli S. (2010). Phenotypic diversity in wild barley (Hordeum vulgare L. ssp. spontaneum (C. Koch) Thell.) accessions collected in Jordan. Resources and Crop Evolution, 57(1): 131-146.‏
Shrimali J., Shekhawat A. S., Kumari S. (2017). Genetic variation and heritability studies for yield and yield components in barley genotypes under normal and limited moisture conditions. Journal of Pharmacognosy and Phytochemistry, 6(4): 233-235.‏
Tadili S., Asghari A., Karimzadeh R., Sofalian O., and Mohammaddoust C. H. (2020). Evaluation of drought stress tolerance in advanced lines durum wheat using the selection index of ideal genotype (SIIG).‏ Journal of Crop Ecophysiology, 1(14): 45-62.
Taghizadeh A., Aminian dehkordi R., and Zeinanloo A. (2020). Estimation of compatibility of some olive cultivars and genotypes in Tarom climate ‎conditions using non-parametric methods ‎. Iranian Journal of Horticultural Science, 51(3): 657-688.
Wada Y., Wisser D., Eisner S., Florke M., Gerten D., Haddeland I., Hanasaki N., Masaki Y., Portmann F. T., Stacke T., and Tessler Z. (2013). Multimodel projections and uncertainties of irrigation water demand under climate change. Geophysical Research Letters, 40(17): 4626-4632.
‏ Yacoubi I., Nigro D., Sayar R., Masmoudi K., Seo Y. W., Brini F., Giove S. L., Mangini G., Giancaspro A., Marcotuli I., Colasuonno P., and Gadaleta A. (2020). New insight into the North-African durum wheat biodiversity: phenotypic variations for adaptive and agronomic traits. Genetic Resources and Crop Evolution, 67(2): 445-455.
Yagoutipour A., Farshadfar E., and Saeedi M. (2017). Assessment of durum wheat genotypes for drought tolerance by suitable compound method. Environmental Stress in Crop Sciences, 10(2): 247-256. (In Persian with English Abstract).
Zali H., and Barati A. (2020). Evaluation of selection index of ideal genotype (SIIG) in other to selction of barley promising lines with high yield and desirable agronomy traits. Journal of Crop Breeding, 12(34): 93-104.‏
Zali H., Hasanloo T., Sofalian O., Asgharii A., and Enayati Shariatpanahi M. (2019). Identifying drought tolerant canola genotypes using selection index of ideal genotype. Journal of Crop Breeding, 11(29): 117-126.‏ (In Persian).‏
Zali H., Hassanloo T., Sofalian O., Asghari A., and Zeinalabedini M. (2017). Appropriate strategies for selection of drought tolerant genotypes in canola. Journal of Crop Breeding, 8(20): 90-77. (In Persian).‏
Zali H., Hasanloo T., Sofalian O., Asghari A., and Zeinalabedini M. (2016). Drought stress effect on physiological parameter and amino acids accumulations in canola. Journal of Crop Breeding, 8(18): 191. (In Persian).‏
Zali H., Sofalian O., Hasanloo T., Asgharii A., and Hoseini S. M. (2015). Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. In Biological Forum, 7(2): 703.
Zeng X. Q. (2015). Genetic variability in agronomic traits of a germplasm collection of hulless barley. Genetics and Molecular Research, 14(4): 18356-18369.‏