پروتکلی برای تولید بذر مصنوعی در Rosmarinus officinalis

نوع مقاله : Research Paper

نویسندگان

1 گروه باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 مرکز آموزشی، فرهنگی و تحقیقاتی دانشگاه اردبیل، ایران.

3 گروه بیوتکنولوژی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران، کدپستی: 16818-34149.

چکیده

استراتژی بذرهای مصنوعی، روشی مؤثر برای حفاظت، تبادل ژرم‌پلاسم و توزیع Rosmarinus officinalis است. Rofficinalis، یکی از گیاهان تیره Laminaceae است که منشأ آن منطقه مدیترانه می‌باشد. بر اساس اطلاعات ما، گزارشی مبنی بر تولید بذر مصنوعی از جنین‌های سوماتیکی بدست آمده از ساقه R. officinalis وجود ندارد. در این مطالعه، یک فناوری استاندارد تولید بذر مصنوعی از ریزنمونه‌های ساقه R. officinalis و جوانه‌زنی آن مورد بررسی قرار گرفت. نوک ساقه R. officinalis روی محیط کشت MS حاوی غلظت‌های مختلف NAA و 2, 4-D کشت شدند. بهترین شرایط القای کالوس (66/41 درصد) در محیط کشت MS غنی شده با 1 میلی‌گرم در لیتر 2,4-D بدست آمد. کالوس‌های جنین‌زا به محیط کشت MS با نصف غلظت حاوی غلظت‌های مختلف BAP و 2, 4-D منتقل شدند و جنین‌های سوماتیکی، بعد از 45 روز بدست آمدند. بیشترین درصد جنین‌زایی سوماتیکی در محیط کشت MS حاوی 1 میلی‌گرم در لیتر 2.4-D و 5/0 میلی‌گرم در لیتر BAP بدست آمد. جنین‌های سوماتیکی در مرحلة اژدری‌شکل با آلژینات سدیم پوشش داده شده و بذرهای مصنوعی بدست آمد. بیشترین توانایی رشد بذرهای مصنوعی (55/80 درصد) در محیط کشت MS حاوی 5/1 میلی‌گرم در لیتر کینتین به‌همراه 5/0 میلی‌گرم در لیتر BAP بدست آمد. علاوه بر این، درصد جوانه‌زنی بذرهای مصنوعی با افزایش طول دوره‌ ذخیره‌سازی و دما کاهش یافت. با این حال، بیشترین کاهش جوانه‌زنی بذر مصنوعی در دمای 2±20 درجه سانتیگراد مشاهده شد. بیشترین جوانه‌زنی بذر مصنوعی (85 درصد) 30 روز پس از قرارگیری در دمای 1±4 درجه سانتی‌گراد بدست آمد.

کلیدواژه‌ها


Agastian P., Williams L., and Ignacimuthu S. (2006). In vitro propagation of Justicia gendarussa Burm. f.–A medicinal plant. Indian Journal of Biotechnology, 5: 246–248.
Ahmad N., and Anis M. (2010). Direct plant regeneration from encapsulated nodal segments of Vitex negundo. Biologia Plantarum, 54: 748–752.
Ahmad N., Faisal M., Fatima N., and Anis M. (2012). Encapsulation of microcuttings for propagation and short-term preservation in Ruta graveolens L.: a plant with high medicinal value. Acta Physiologiae Plantarum, 34: 2303–2310.
Al-Qurainy F., Nadeem M., Khan S., Alansi S., Tarroum M., and Al-Ameri A. (2014). Synseed production for storage and conservation of Ochradenus baccatus delile. Pakistan Journal of Botany, 46: 897–902.
Ali A., Gull I., Majid A., Saleem A., Naz S., and Naveed N. H. (2012). In vitro conservation and production of vigorous and desiccate tolerant synthetic seeds in Stevia rebaudiana. Journal of Medicinal Plants Research, 6: 1327–1333.
Asmah H. N., Hasnida H. N., Zaimah N. N., Noraliza A., and Salmi N. N. (2011). Synthetic seed technology for encapsulation and regrowth of in vitro-derived Acacia hyrid shoot and axillary buds. African Journal of Biotechnology, 10: 7820–7824.
Bapat V. A., and Mhatre M. (2005). Bioencapsulation of somatic embryos in woody plants. In: Jain S. M., Gupta P. K. (Eds.), Protocol for Somatic Embryogenesis in Woody Plants, Springer Netherlands, Dordrecht, 539–552.
Baskaran P., Kumari A., and Van Staden J. (2015). Embryogenesis and synthetic seed production in Mondia whitei. Plant Cell, Tissue and Organ Culture, 121: 205–214.
Bhanuprakash K., and Umesha. (2015). Seed Biology and Technology. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. V. (Eds.), Plant Biology and Biotechnology: Volume I: Plant Diversity, Organization, Function and Improvement. Springer India, New Delhi, 469–497.
Cheruvathur M. K., Kumar G. K., and Thomas T. D. (2013). Somatic embryogenesis and synthetic seed production in Rhinacanthus nasutus (L.) Kurz. Plant Cell, Tissue and Organ Culture, 113: 63–71.
Chithra M., Martin K. P., Sunandakumari C., and Madhusoodanan P. V. (2005). Somatic embryogenesis, encapsulation, and plant regeneration of Rotula aquatica lour., a rare rhoeophytic woody medicinal plant. In Vitro Cellular & Developmental Biology - Plant, 41: 28–31.
Das D., Nirala N., Redoy M., Sopory S., and Upadhyaya K. (2010). Encapsulated somatic embryos of grape (Vitis vinifera L.): an efficient way for storage and propagation of pathogen-free plant material. Asia-Pacific Journal of Molecular Biology and Biotechnology, 18: 159–162.
Daud N., Taha R., and Hasbullah N. (2008). Artificial seed production from encapsulated micro shoots of Saintpaulia ionantha Wendl.(African violet). Jornal of Applied Science, 8: 4662–4667.
de Oliveira J. R., Camargo S. E. A., and de Oliveira L.D. (2019). Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. Journal of Biomedical Science, 26: 5.
Dhir R., and Shekhawat G. S. (2013). Production, storability and morphogenic response of alginate encapsulated axillary meristems and genetic fidelity evaluation of in vitro regenerated Ceropegia bulbosa: A pharmaceutically important threatened plant species. Industrial Crops and Products, 47: 139–144.
Dhir R., Shekhawat G. S., and Alam A. (2014). Improved protocol for somatic embryogenesis and calcium alginate encapsulation in Anethum graveolens l.: A medicinal herb. Applied Biochemistry and Biotechnology, 173: 2267–2278.
Faisal M., Alatar A. A., and Hegazy A. K. (2013). Molecular and biochemical characterization in Rauvolfia tetraphylla plantlets grown from synthetic seeds following in vitro cold storage. Applied Biochemistry and Biotechnology, 169: 408–417.
Ganapathi T. R., Srinivas L., Suprasanna P., and Bapat V. A. (2001). Regeneration of plants from alginate-encapsulated somatic embryos of banana cv. Rasthali (Musa SPP. AAB Group). In Vitro Cellular & Developmental Biology - Plant, 37: 178–181.
Gantait S., Kundu S., Ali N., and Sahu N. C. (2015). Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiologiae Plantarum, 37: 98.
Gantait S., Vijayan J., and Majee A. (2017). Artificial seed production of Tylophora indica for interim storing and swapping of germplasm. Horticultural Plant Journal, 3: 41–46.
Ikhlaq M., Hafiz I. A., Micheli M., Ahmad T., Abbasi N. A., and Standardi A. (2010). In vitro storage of synthetic seeds: effect of different storage conditions and intervals on their conversion ability. African Journal of Biotechnology, 9: 5712–5721.
Karataş T., Korkmaz F., Karataş A., and Yildirim S. (2020). Effects of Rosemary (Rosmarinus officinalis) extract on growth, blood biochemistry, immunity, antioxidant, digestive enzymes and liver histopathology of rainbow trout, Oncorhynchus mykiss. Aquaculture Nutrition, 26: 1533–1541.
Kim M. A., and Park J. K. (2002). High frequency plant regeneration of garlic (Allium sativum L.) calli immobilized in calcium alginate gel. Biotechnology and Bioprocess Engineering, 7: 206.
Kinoshita I., and Saito A. (1990). Propagation of Japanese white birch by encapsulated axillary buds 1. Journal of the Japanese Forestry Society, 72: 166–170.
Krishna Kumar G., and Thomas T. D. (2012). High frequency somatic embryogenesis and synthetic seed production in Clitoria ternatea Linn. Plant Cell, Tissue and Organ Culture, 110: 141–151.
Kumar M. B. A., Vakeswaran V., and Krishnasamy V. (2005). Enhancement of synthetic seed conversion to seedlings in hybrid rice. Plant Cell, Tissue and Organ Culture, 81: 97–100.
Kumar S., Rai M. K., Singh N., and Mangal M. (2010). Alginate-encapsulation of shoot tips of jojoba [Simmondsia chinensis (Link) Schneider] for germplasm exchange and distribution. Physiology and Molecular Biology of Plants, 16: 379–382.
Lešnik S., Furlan V., and Bren U. (2021). Rosemary (Rosmarinus officinalis L.): extraction techniques, analytical methods and health-promoting biological effects. Phytochemistry Reviews, 20: 1273–1328.
Malabadi R. B., and Staden J. V. (2005). Storability and germination of sodium alginate encapsulated somatic embryos derived from the vegetative shoot apices of mature Pinus patula trees. Plant Cell, Tissue and Organ Culture, 82: 259–265.
Maqsood M., Mujib A., and Siddiqui Z. H. (2012). Synthetic seed development and conversion to plantlet in Catharanthus roseus (L.) G. Don. Biotechnology, 11: 37–43.
Mishra J., Singh M., Palni L. M. S., and Nandi S. K. (2011). Assessment of genetic fidelity of encapsulated microshoots of Picrorhiza kurrooa. Plant Cell, Tissue and Organ Culture, 104: 181–186.
Murashige T., and Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15: 473–497.
Nguyen H. C., Nguyen H. N. T., Huang M. -Y., Lin K. -H., Pham D. -C., Tran Y. B., and Su C. -H. (2021). Optimization of aqueous enzyme-assisted extraction of rosmarinic acid from rosemary (Rosmarinus officinalis L.) leaves and the antioxidant activity of the extract. Journal of Food Processing and Preservation, 45: e15221.
Nhut D. T., Tien T. N. T., Huong M. T. N., Hien N. T. T., Huyen P. X., Luan V. Q., and Teixeira da Silva J. (2005). Artificial seeds for propagation and preservation of Cymbidium spp. Propagation of Ornamental Plants, 5: 67–73.
Nieves N., Zambrano Y., Tapia,R., Cid M., Pina D., and Castillo R. (2003). Field performance of artificial seed-derived sugarcane plants. Plant Cell, Tissue and Organ Culture, 75: 279–282.
Prakash A. V., Nair D. S., Alex S., Soni K. B., Viji M. M., and Reghunath B. R. (2018). Calcium alginate encapsulated synthetic seed production in Plumbago rosea L. for germplasm exchange and distribution. Physiology and Molecular Biology of Plants, 24: 963–971.
Prewein C., and Wilhelm E. (2003). Plant regeneration from encapsulated somatic embryos of pedunculate oak (Quercus robur L.). In Vitro Cellular & Developmental Biology - Plant, 39: 613–617.
Redenbaugh K., Fujii J., Slade D., Viss P., and Kossler M. (1991). Artificial seeds — encapsulated somatic embryos. In: Bajaj, Y.P.S. (Ed.), High-Tech and Micropropagation I. Springer Berlin Heidelberg, Berlin, Heidelberg, 395–416.
Rihan H. Z., Kareem F., El-Mahrouk M. E., and Fuller M. P. (2017). Artificial seeds (principle, aspects and applications). Agronomy, 7: 71.
Sakhanokho H. F., Pounders C. T., and Blythe E. K. (2013). Alginate encapsulation of Begonia microshoots for short-term storage and distribution. The Scientific World Journal, 2013: 341568.
Siddique I., and Bukhari N. A. W. (2018). Synthetic seed production by encapsulating nodal segment of Capparis decidua (Forsk.), in vitro regrowth of plantlets and their physio biochemical studies. Agroforestry Systems, 92: 1711–1719.
Singh A. K., and Chand S. (2010). Plant regeneration from alginate-encapsulated somatic embryos of Dalbergia sissoo Roxb. Indian Journal of Biotechnology, 9: 319–324.
Singh S., Tanwer B. S., and Khan M. (2011). Callus induction and in vivo and in vitro comparative study of primary metabolites of Withania Somnifera. Advances in Applied Science Research, 2: 47–52.
Tabassum B., Nasir I. A., Farooq A. M., Rehman Z., Latif Z., and Husnain T. (2010). Viability assessment of in vitro produced synthetic seeds of cucumber. African Journal of Biotechnology, 9: 7026–7032.
Varshney A., and Anis M. (2014). Synseed conception for short-term storage, germplasm exchange and potentialities of regeneration genetically stable plantlets of desert date tree (Balanites aegyptiaca Del.). Agroforestry Systems, 88: 321–329.
Verma S. K., Rai M. K., Asthana P., Jaiswal V. S., and Jaiswal U. (2010). In vitro plantlets from alginate-encapsulated shoot tips of Solanum nigrum L. Scientia Horticulturae, 124: 517–521.
Wani M., Pande S., and More N. (2010). Callus induction studies in Tridax procumbens L. International Journal of Biotechnology Applications, 2: 11–14.
Zych M., Furmanowa M., Krajewska-Patan A., Łowicka A., Dreger M., and Mendlewska S. (2005). Micropropagation of Rhodiola kirilowii plants using encapsulated axillary buds and callus. Acta Biologica Cracoviensia Series Botanica, 47: 83–87.