Barker T., Campos H., Cooper M., Dolan D., Edmeades G., and Habben J. (2005). Improving drought tolerance in maize. Plant Breeding Reviews, 25: 173–253.
Comas L. H., Becker S. R., Cruz V. M., Byrne P. F., and Dierig D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 5: 4–442.
Cooper M., Eeuwijk F. A. L., Hammer G., WPodlich D., and Messina C. (2009). Modeling QTL for complex traits: detection and context for plant breeding. Current Opinion in Plant Biology, 12(2): 231–240.
Hakizimana F., Haley S. D., and Turnipseed E. B. (2000). Repeatability and genotype X environment interaction of coleoptile length measurements in winter wheat. Crop Science, 40: 1233–1237.
Han Y., Chena Y., Yina S., Zhanga M., and Wanga W. (2015). Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. Journal of Plant Physiology, 173: 62–71.
He X. J., Mu R. L., Cao W. H., Zhang Z. G., Zhang J. S., and Chen S. Y. (2005). AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant Journal, 44: 903–916
Itam M., Abdelrahman M., Yamasaki Y., Mega R., Gorafi Y., Akashi K., and Tsujimoto H. (2020). Aegilops tauschii introgressions improve physio-biochemical traits and metabolite plasticity in bread wheat under drought stress. Agronomy, 10: 1588.
Janiak A., Kwaśniewski M., and Szarejko I. (2016). Gene expression regulation in roots under drought. Journal of Experimental Botany, 67(4): 1003–1014.
Jia Z., Liu Y., Gruber B. D., Neumann K., Kilian B., and Graner A. N. (2019). Genetic dissection of root system architectural traits in spring barley. Frontiers in Plant Science, 10: 1–14.
Koressaar T., Lepamets M., Kaplinski L., Raime K., Andreson R., and Remm M. (2018). Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics, 34(11): 1937–1938.
Li B., Liu D., Li Q., Mao X., Wang J., Chang X., and Jing R. (2016). Overexpression of wheat gene TaMOR improves root system architecture and grain yield in Oryza sativa. Journal Experimental Botany, 67(14): 4155–4167.
Roychoudhry S., Del Bianco M., Kieffer M., and Kepinski S. (2013). Auxin controls gravitropic setpoint angle in higher plant lateral branches. Current Biology, 23: 1497–1504.
Tardieu F., Varshney R. K., and Tuberosa R. (2017). Improving crop performance under drought – cross-fertilization of disciplines. Journal of Experimental Botany, 68(7): 1393–1398.
Wasson A. P., Richards R. A., and Chatrath R. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 63: 3485–3498.
Wu Y. J, Thorne E. T., Sharp R. E., and Cosgrove D. J. (2001). Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiology, 126: 1471–1479.
Xu W., Jia L., Shi W., Liang J., and Li Q. (2013). Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytology, 197: 139–150.
Xue G.P., Way H. M., Richardson T., Drenth J., Joyce P. A., and Mcintyre C. L. (2011). Over-expression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molecular Plant, 4: 697–712.
Zhao M. R., Li F., Fang Y., Gao Q., and Wang W. (2011). Expansin-regulated cell elongation is involved in the drought tolerance in wheat. Protoplasma, 248(2): 313–323.
Zhou S., Han Y., Chen Y., Kong X., and Wang W. (2015). The involvement of expansins in response to water stress during leaf development in wheat. Journal of Plant Physiology, 183: 64–74.