تأثیر تنش خشکی بر برخی صفات مورفولوژیکی و فیزیولوژیکی ژنوتیپ های مختلف Aegilops tauschii

نوع مقاله : Research Paper

نویسندگان

1 گروه بیوتکنولوژی، دانشگاه گیلان، رشت، ایران.

2 گروه بیوتکنولوژی، دانشکده علوم گیاهی، دانشگاه گیلان، رشت، ایران، کد پستی: 41996-13776.

3 گروه بیوتکنولوژی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران.

4 گروه تحقیقات کنترل بیولوژیکی، پژوهشکده نباتات ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی (AREEO)، تهران، ایران.

چکیده

Aegilops tauschii یکی از  اجداد گندم نان بوده و منبع اصلی ژن‌های مقاوم در برابر تنش‌های زیستی و غیرزیستی است. این تحقیق به‌صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی برای تعیین تأثیر تنش خشکی بر برخی ویژگی‌های مورفولوژیکی در 23 ژنوتیپ A. tauschii انجام شد. برخی از صفات مورفولوژیکی و فیزیولوژیکی مهم در شرایط گلخانه‌ای در دانشگاه بین‌المللی امام خمینی (ره) مورد بررسی قرار گرفت. نتایج نشان داد؛ طول ریشه، تعداد برگ و پنجه، غلظت کلروفیل، وزن تر اندام هوایی و ریشه، وزن خشک اندام هوایی و ریشه، درصد برگ‌های زرد و لوله‌ای شده در مرحله گیاهچه‌ای و وزن خشک اندام هوایی و ریشه، طول برگ پرچم، ساقه، سنبله و تعداد سنبله در مرحله بلوغ در تنش خشکی افزایش یافت. در مقابل، مقدار محتوی آب نسبی و طول اندام هوایی در مرحله گیاهچه‌ای، در شرایط تنش خشکی کاهش یافت. در مرحله گیاهچه‌ای، بیشترین طول ریشه، تعداد برگ، وزن تر و خشک ‌ریشه، درصد برگ‌های زرد و لوله‌ای شده به‌ترتیب 67/44 سانتی‌متر، 00/24، 35/3 گرم در بوته، 40/0 گرم در بوته، 00/50 درصد و 79/80 درصد در شرایط خشکی بود. در مرحله بلوغ، بیشترین وزن خشک‌اندام هوایی و ریشه با مقدار 58/26 و 77/41 گرم در بوته بود که در ژنوتیپ‌های KC-55 و KC-2122 در شرایط خشکی بدست آمد و بیشترین مقدار طول برگ پرچم، طول پدانکل، طول سنبله و تعداد سنبله با مقادیر 30/12 سانتی‌متر، 65/15 سانتی‌متر، 08/9 سانتی‌متر و 30 عدد در ژنوتیپ‌هایKC-2123 ، KC-2225 ، KC-2115 و KC-621 در تیمار شاهد مشاهده شد. بر اساس تجزیه خوشه‌ای به روش وارد، ژنوتیپ‌های A. tauschii به چهار گروه مختلف تقسیم شدند. نتایج این مطالعه نشان داد که ژنوتیپ‌هایKC-621 ، KC-1772 و KC-2225 می‌توانند تنش خشکی را به‌خوبی تحمل کنند و بنابراین برای استفاده در برنامه‌های اصلاح گندم توصیه می‌شوند.

کلیدواژه‌ها


Abbas A., Yu H., Cui H., and Li X. (2019). Effect of drought stress on chlorophyll fluorescence, and biomass portioning of Aegilops tauschii l. Applied Ecology and Environmental Research, 17(1): 1071–1082.
Ahmadi J., Pour-Aboughadareh A., Ourang S. F., Mehrabi A. A., and Siddique K. H. M. (2018). Wild relatives of wheat: AegilopsTriticum accessions disclose differential antioxidative and physiological responses to water stress. Acta Physiologiae Plantarum,40(5): 90.
Arabbeigi M., Arzani A., Majidi M. M., Kiani R., Sayed Tabatabaei B. E., and Habibi F. (2014). Salinity tolerance of Aegilops cylindrica genotypes collected from hyper-saline shores of Uremia Salt Lake using physiological traits and SSR markers. Acta Physiologiae Plantarum, 36(8): 2243–2251.
Du Y., Zhao Q., Chen L., Yao X., Zhang W., Zhang B., and Xie F. (2020). Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry, 146: 1–12.
Etminan A., Pour-Aboughadareh A., Mohammadi R., Shooshtari L., Yousefiazarkhanian M., and Moradkhani H. (2019). Determining the best drought tolerance indices using artificial neural network (ANN): Insight into application of intelligent agriculture in agronomy and plant breeding. Cereal Research Communications, 47(1): 170–181.
Gaju O., Reynolds M. P., Sparkes D. L., and Foulkes M. J. (2009). Relationships between large-spike phenotype, grain number, and yield potential in spring wheat. Crop Science, 49(3): 961–973.
Gálvez S., Mérida-García R., Camino C., Borrill P., Abrouk M., Ramírez-González R. H., Biyiklioglu S., Amil-Ruiz F., Dorado G., Budak H., Gonzalez-Dugo V., Zarco-Tejada P. J., Appels R., Uauy C., Hernandez P., and The I. (2019). Hotspots in the genomic architecture of field drought responses in wheat as breeding targets. Functional & Integrative Genomics, 19(2): 295–309.
Hairat S., and Khurana P. (2015). Evaluation of Aegilops tauschii and Aegilops speltoides for acquired thermotolerance: Implications in wheat breeding programmes. Plant Physiology and Biochemistry, 95: 65–74.
Johari-Pireivatlou M. (2010). Effect of soil water stress on yield and proline content of four wheat lines. African Journal of Biotechnology, 9(1): 036–040.
Khakwani A. A., Dennett M., and Munir M. (2011). Drought tolerance screening of wheat varieties by inducing water stress conditions. Songklanakarin Journal of Science & Technology, 33(2): 135–142.
Khakwani A. A., Dennett M., Munir M., and Abid M. (2012). Growth and yield response of wheat varieties to water stress at booting and anthesis stages of development. Pakistan Journal of Botany, 44(3): 879–886.
Liu H., Searle I. R., Mather D. E., Able A. J., and Able J. A. (2015). Morphological, physiological and yield responses of durum wheat to pre-anthesis water-deficit stress are genotype-dependent. Crop and Pasture Science, 66(10): 1024–1038.
Liu Y., Zhang P., Li M., Chang L., Cheng H., Chai S., and Yang D. (2020). Dynamic responses of accumulation and remobilization of water soluble carbohydrates in wheat stem to drought stress. Plant Physiology and Biochemistry, 155: 262–270.
Matsuoka Y., Takumi S., and Kawahara T. (2008). Flowering time diversification and dispersal in central Eurasian wild wheat Aegilops tauschii Coss.: genealogical and ecological framework. PLoS One, 3(9): e3138
Mizuno N., Yamasaki M., Matsuoka Y., Kawahara T., and Takumi S. (2010). Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.: implications for intraspecific lineage diversification and evolution of common wheat. Molecular Ecology, 19(5): 999–1013.
Naderi S., Fakheri B.-A., Maali-Amiri R., and Mahdinezhad N. (2020). Tolerance responses in wheat landrace Bolani are related to enhanced metabolic adjustments under drought stress. Plant Physiology and Biochemistry, 150: 244–253.
Ohashi Y., Nakayama N., Saneoka H., and Fujita K. (2006). Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biologia Plantarum, 50(1): 138–141.
Porcel R., and Ruiz-Lozano J. M. (2004). Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany, 55(403): 1743–1750.
Pour-Aboughadareh A., Mohammadi R., Etminan A., Shooshtari L., Maleki-Tabrizi N., and Poczai P. (2020). Effects of drought stress on some agronomic and morpho-physiological traits in durum wheat genotypes. Sustainability, 12(14): 5610.
Qaseem M. F., Qureshi R., and Shaheen H. (2019). Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum l.) genotypes varying in sensitivity to heat and drought stress. Scientific Reports, 9(1): 6955.
Valliyodan B., and Nguyen H. T. (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 9(2): 189–195.
Wang J., Luo M.-C., Chen Z., You F. M., Wei Y., Zheng Y., and Dvorak J. (2013). Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytologist, 198(3): 925–937.
Wang J. Y., Turner N. C., Liu Y. X., Siddique K. H. M., and Xiong Y. C. (2017). Effects of drought stress on morphological, physiological and biochemical characteristics of wheat species differing in ploidy level. Functional Plant Biology, 44(2): 219–234.
Xu W., Cui K., Xu A., Nie L., Huang J., and Peng S. (2015). Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiologiae Plantarum, 37(2): 9.
Zhang D., Zhou Y., Zhao X., Lv L., Zhang C., Li J., Sun G., Li S., and Song C. (2018). Development and utilization of introgression lines using synthetic octaploid wheat (Aegilops tauschii×hexaploid wheat) as donor. Frontiers in Plant Science, 9: 1113.
Zhao X., Bai S., Li L., Han X., Li J., Zhu Y., Fang Y., Zhang D., and Li S. (2020). Comparative transcriptome analysis of two Aegilops tauschii with contrasting drought tolerance by RNA-seq. International Journal of Molecular Sciences, 21(10): 3595.