تجزیه و تحلیل مناطق ژنومی مربوط به مقاومت در برابر پوسیدگی پایه ساقه در آفتابگردان (Helianthus annuus L.) تحت شرایط مزرعه‌ای

نوع مقاله : Research Paper

نویسندگان

1 گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

2 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران، کد پستی: 165.

3 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران.

چکیده

آفتابگردان با نام علمیHelianthus annuus L.  یکی از چهار منبع مهم روغن خوراکی در جهان است؛ اما بیماری‌های قارچی آسیبی عمده برای عملکرد دانه و کیفیت آن است. در این میان، پوسیدگی پایة ساقه ناشی از قارچ Sclerotinia sclerotiorum (Lib.) de Bary بیماری جدی برای آفتابگردان روغنی در سراسر جهان شناخته می‌شود. در این تحقیق، مناطق ژنومی مرتبط با مقاومت جزئی به بیماری پوسیدگی پایة ساقه با استفاده از جمعیت رگه‌های خویش آمیخته نوترکیب (RILs) حاصل از تلاقی بین PAC2 (♀)  و RHA266 (♂)  ، شناسایی شد. نه صفت فنوتیپی مرتبط با مقاومت به بیماری از جمله PN4D ، PN8D ، PN12D ، NCW100S ، CW100S ، NCPY ، CPY ، DP100S و DPY در شرایط مزرعه تحت آلودگی مصنوعی اندازه‌گیری شدند. برای نقشه‌یابی QTL‌ ها، از نقشة پیوستگی ژنتیکی نوتوسعه یافته برای آفتابگردان استفاده شد. نقشة پیوستگی شامل 210 نشانگر SSR و 11 نشانگر SNP است که در 17 گروه پیوستگی توزیع شده‌اند. تجزیه و تحلیل QTL‌ها با استفاده از روش مکان‌یابی فاصله‌ای مرکب (CIM) انجام شد. ضریب تنوع (CV) زیادی در صفات مورد مطالعه مشاهده شد که نشان‌دهندة تنوع ژنتیکی زباد برای حساسیت به بیماری در جمعیت RIL آفتابگردان مورد مطالعه است. در مجموع، 56 QTL برای نه صفت کمّی مورد مطالعه شناسایی شد. تعداد QTL‌ها برای هر صفت از 1 تا 9 متغیر بود که 0.91 تا 80.75 درصد از تغییرات فنوتیپی (R2) صفات را توجیه می‌نمودند. علامت اثر افزایشی برای 17 QTL مثبت (+) بود، که نشان می‌دهد که آلل امیدبخش QTL از والد پدری (RHA266) منتقل شده است. در این مطالعه، QTL‌های بزرگ اثر (LOD ≥ 2.5 و R2 ≥ 10%) برای همه صفات مورد مطالعه به استثنای صفاتNCW100S  و CW100S شناسایی شد. QTL‌های بزرگ اثر برای اجرای انتخاب به کمک نشانگر (MAS) در برنامه‌های اصلاح برای مقاومت مهم هستند.

کلیدواژه‌ها


Amouzadeh M., Darvishzadeh R., Haddadi P., Abdollahi-Mandoulakani B., and Rezaee-Danesh Y. (2013). Genetic analysis of partial resistance to basal stem rot (Sclerotinia sclerotiorum) in sunflower. Genetika, 45: 737–748.
Amoozadeh M., Darvishzadeh R., Davar R., Abdollahi Mandoulakani B., Haddadi P., and Basirnia A. (2015). Quantitative trait loci associated with isolate specific and isolate non-specific partial resistance to Sclerotinia sclerotiorum in sunflower. Journal of Agricultural Science and Technology, 17(1): 213–226.
Bert P., Jouan F., Tourvieille de Labrouhe D., Seere F., Nicolas P., and Vear F. (2002). Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 1. QTL involved in resistance to Sclerotinia sclerotiorum and Diaporthe helianthi. Theoretical and Applied Genetics, 105: 985–993.
Bert P. F., Dechamp-Guillaume G., Serre F., Jouan I., Tourvieille de Labrouhe D., Nicolas P., and Vear F. (2004). Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 3. Characterisation of QTL involved in resistance to Sclerotinia sclerotiorum and Phoma macdonaldi. Theoretical and Applied Genetics, 109: 865–874.
Bolton M. D., Thomma B. P. H. J., and Nelson B. D. (2006). Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7: 1–16.
Davar R., Darvishzadeh R., Majd A., Ghosta Y., and Sarrafi A. (2010). QTL mapping of partial resistance to basal stem rot in sunflower using recombinant inbred lines. Phytopathologia Mediterranea, 49: 330–341.
Delgado S. G., Castaño F., Cendoya M. G., Salaberry M. T., and Quiróz F. (2020). Analysis of genetic determination of partial resistance to white rot in sunflower. Helia, 43(72): 1–14. DOI: https://doi.org/10.1515/helia-2020-0009.
Doerge R. W., and Churchill G. A. (1996). Permutation test for multiple loci affecting a quantitative character. Genetics, 142: 285–294.
Filippi C. V., Zubrzycki J. E., Di Rienzo J. A., Quiroz F. J., Puebla A. F., Alvarez D., Maringolo C. A., Escande A. R., Hopp H. E., Heinz R. A., Paniego N. B., and Lia V. V. (2020). Unveiling the genetic basis of Sclerotinia head rot resistance in sunflower. BMC Plant Biology, 20: 322. DOI: https://doi.org/10.1186/s12870-020-02529-7.
Fusari C. M., Di Rienzo J. A., Troglia C., Nishinakamasu V., Moreno M. V., and Maringolo C.(2012). Association mapping in sunflower for Sclerotinia head rot resistance. BMC Plant Biology, 12: 93.
Gentzbittel L., Vear F., Zhang Y. X., Berville A., and Nicolas P. (1995). Development of a consensus linkage RFLP map of cultivated sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 90: 1079–1086.
Gulya T. J., Rashid K. Y., and Masirevic S. M. (1997). Sunflower diseases. In: Schneiter A. A. (Ed.) Sunflower Technology and Production. Soil Science Society of America Inc. Madison, 263–379.
Haddadi P., Ebrahimi A., Langlade N. B., Yazdi-Samadi B., Berger M., and Calmon A. (2012). Genetic dissection of tocopherol and phytosterol in recombinant inbred lines of sunflower through QTL analysis and the candidate gene approach. Molecular Breeding, 29: 717–729.
Hittalmani S., Huang N., Courtois B., Venuprasad R., Shashidhar H. E., and Zhuang J. Y. (2003). Identification of QTL for growth and grain yield-related traits in rice across nine locations of Asia. Theoretical and Applied Genetics, 107: 679–690.
Ibrahim A. K., Zhang L., Niyitanga S., Afzal M. Z., Xu Y., Zhang L., Zhang L., and Qi J. (2020). Principles and approaches of association mapping in plant breeding. Tropical Plant Biology, 13: 212–224. DOI: https://doi.org/10.1007/s12042-020-09261-4.
Jaganathan D., Bohra A., Thudi M., and Varshney R. K. (2020). Fine mapping and gene cloning in the postNGS era: advances and prospects. Theoretical and Applied Genetics, 133: 1791–1810.
Kane N. C., Gill N., King M. G., Bowers J. E., Berges H., Gouzy J., Bachlava E., Langlade N. B., Lai Z., Stewart M., Burke J. M., Vincourt P., Knapp S. J., and Rieseberg L. H. (2011). Progress towards a reference genome for sunflower. Botany, 89: 429–437.
Laroche A., Frick M., Graf R. J., Larsen J., and Laurie J. D. (2019). Pyramiding disease resistance genes in Canadian elite winter wheat germplasm. The Crop Journal, 7(6): 739–749.
Mbedzi P. P., van der Hoven L., Vorster B. J., and van der Waals J. E. (2019). Screening for Sclerotinia sclerotiorum resistance using detached leaf assays and simple sequence repeat markers in soybean cultivars. Crop Protection, 125: 104909.
Mestries E., Gentzbittel L., Tourvieille de Labrouhe D., Nicolas P., and Vear F. (1998). Analysis of quantitative trait loci associated with resistance to Sclerotinia sclerotiorum in sunflowers (Helianthus annuus L.) using molecular markers. Molecular Breeding,4: 215–226.
Micic Z., Hahn V., Bauer E., Schön C., Knapp S. J., and Tang S. (2004). QTL mapping of Sclerotinia midstalk rot resistance in sunflower. Theoretical and Applied Genetics, 109: 1474–1484.
Micic Z., Hahn V., Bauer E., Schön C. C., and Melchinger A. E. (2005a). QTL mapping of resistance to Sclerotinia midstalk rot in RIL of sunflower population NDBLOS x CM625. Theoretical and Applied Genetics,110: 1490–1498.
Micic Z., Hahn V., Bauer E., Melchinger A. E., Knapp S. J., and Tang S. (2005b). Identification and validation of QTL for Sclerotinia midstalk rot resistance in sunflower by selective genotyping. Theoretical and Applied Genetics, 111: 233–242.
Najafzadeh R., Darvishzadeh R., Musa-Khalifani Kh., Abrinbana M., and Alipour H. (2018). Retrotransposonable regions of sunflower genome having relevance with resistance to Sclerotiniaspecies: S. sclerotiorum and S. minor. Australasian Plant Pathology, 47: 511–519.
Pereyra V. R., and Escande A. (1994). Manual de reconocimiento de enfermedades del Girasol en la Argentina. Ed del INTA CERBAS, Balcarce, Buenos Aires, Argentina, 122–130.
Poormohammad-Kiani S., Grieu P., Maury P., Hewezi T., Gentzbittel L., and Sarrafi A. (2007). Genetic variability for physiological traits under drought conditions and differential expression of water stress associated genes in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 114: 193–207.
Qasim M. U., Zhao Q., Shahid M., Samad R. A., Ahmar S., Wu J., Fan C., and Zhou Y. (2020). Identification of QTLs containing resistance genes for Sclerotinia stem rot in Brassica napus using comparative transcriptomic studies. Frontiers in Plant Science, 11: 776. DOI: 10.3389/fpls.2020.00776.
Rönicke, S., Hahn V., Horn R., Gröne I., Brahm L., Schnabl H., and Freidt W. (2004). Interspecific hybrids of sunflower as a source of Sclerotinia resistance. Plant Breeding, 123: 152–157.
Schneiter A.A. and Miller J.F. (1981). Description of sunflower growth stages. Crop Science, 21: 901–903.
Seiler G. J., Misar C. G., Gulya T. J., Underwood W. R., Flet B. C., Gille M. A., and Marke S. G. (2017). Identification of novel sources of resistance to Sclerotinia basal stalk rot in South African sunflower germplasm. Plant Health Progress, 18: 87–90.
Seiler G. J., and Jan C. C. (2014). Wild sunflower species as a genetic resource for resistance to sunflower broomrape (Orobanche cumana Wallr.). Helia, 37: 129–139.
Soleri D. (1993). Hopi crop diversity and change. Journal of Ethnobiology, 13: 203–231.
Talukder Z. I., Underwood W., Ma G., Seiler G. J., Misar C. G., Cai X., and Qi L. (2020). Genetic dissection of Phomopsis stem canker resistance in cultivated sunflower using high density SNP linkage map. International Journal of Molecular Sciences, 21: 1497. DOI: 10.3390/ijms21041497.
Talukder Z. I., Seiler G. J., Song Q., Ma G., and Qi L. (2016). SNP discovery and QTL mapping of Sclerotinia basal stalk rot resistance in sunflower using genotyping-by-sequencing. The Plant Journal, 9(3): 1–16.
Talukder Z. I., Hulke B. S., Marek L. F., and Gulya T. J. (2014a). Sources of resistance to sunflower diseases in a global collection of domesticated USDA plant introductions. Crop Science, 54: 694–705.
Talukder Z. I., Hulke B. S., Qi L., Scheffler B. E., Pegadaraju V., McPhee K., and Gulya T. J. (2014b). Candidate gene association mapping of Sclerotinia stalk rot resistance in sunflower (Helianthus annuus L.) uncovers the importance of COI1 homologs. Theoretical and Applied Genetics, 127: 193–209.
Tang S., Yu J. K., Slabaugh M. B., Shintani D. K., and Knapp S. J. (2002). Simple sequence repeat map of the sunflower genome. Theoretical and Applied Genetics, 105: 1124–1136.
Tuberosa R., Sanguineti M. C., Landi P., Giuliani M. M., Salvi S., and Conti S. (2002). Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Molecular Biology, 48: 697–712.
Van-Becelaere G., and Miller J. F. (2004). Combining ability for resistance to Sclerotinia head rot in sunflower. Crop Science, 44: 1542–1545.
Vear F., and Grezes-Besset B. (2010). Progress in breeding sunflowers for resistance to Sclerotinia. Proceeding of I.S.A. Symposium “Sunflower breeding for resistance to diseases”, Krasnodar, Russia, 19-21(6): 30-35.
Voorrips R. (2002). Map Chart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93: 77–78.
Wang S., Basten C. J., and Zeng Z. B. (2005). Windows QTL Cartographer V2.5. Department of Statistics, North Carolina State University, Raleigh NC, Available from http://statgen.ncsu.edu /qtlcart/WQTLCart.htm.
Xu Y., Li P., Yang Z., and Xu C. (2017). Genetic mapping of quantitative trait loci in crops. The Crop Journal, 5(2): 175–184.
Zubrzycki J., Fusari C., Maringolo C., Di Rienzo J., Cervigni G., and Nishinakamasu V. (2012). Biparental QTL and association mapping for Sclerotinia head rot resistance in cultivated sunflower. In: Proceeding of 18th International Sunflower Conference, Mar del Plata, Argentina, 99-102.