ارزیابی تنوع ژنتیکی نسترن وحشی با استفاده از نشانگر ISSR

نوع مقاله : Research Paper

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران، کدپستی: 56199-11367.

2 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران.

چکیده

گل نسترن وحشی یکی از مهم‌ترین گونه‌های خانوادة رزاسه در ایران است که می‌تواند به عنوان گیاه دارویی و همچنین پایه برای دیگر گونه‌های رز استفاده شود. این گیاه بومی سرزمین ایران است، لذا شناسایی ژنوتیپ‌های بومی برای حفظ ذخایر ژنتیکی و اهداف اصلاحی مهم و حیاتی هستند. تخمین تنوع ژنتیکی مواد گیاهی یکی از فعالیت‌های مهم در پیش اصلاح محصولات است. در پژوهش تنوع ژنتیکی، 23 ژنوتیپ نسترن وحشی با 15 نشانگر ISSR بررسی شد. ژنوتیپ‌ها از سه ناحیه مختلف استان اردبیل (نمین، نیر و خلخال) جمع آوری شدند. نتایج گواهی می‌دهد که همه پرایمرها، الگوی باندی واضح و چند شکل (77% چند شکلی) را نشان می‌دهند؛ اما آغازگر 15 تعداد باند چند شکل بیشتری را آشکار کرد که از این لحاظ از بقیه آغازگرها برتر بود. همچنین آغازگر 15 دارای بیشترین تعداد باند چند شکل با تعداد 7 باند و آغازگرهای UBC823 و UBC825 با سه باند کمترین باند چند شکل را تولید کردند. الگوی تجزیه کلاستر ژنوتیپ ها منطبق با نواحی جغرافیایی نمونه‌ها بود، بطوری که ژنوتیپ‌های خلخال از ژنوتیپ‌های نواحی نیر و نمین جدا شدند. همچنین نتایج حاکی از آن بود که نشانگر ISSR توانسته است ژنوتیپ‌ها را براساس مناطق جغرافیایی از یکدیگر جدا کند. با تعیین فاصله ژنتیکی بین ژنوتیپ‌ها، بهترین والدین، ژنوتیپ‌هایی با فاصله ژنتیکی زیاد است. براساس نتایج، نشانگر ISSR یک سیستم نشانگری مفید است که می‌تواند اطلاعات عالی از ژنوتیپ های نسترن وحشی فراهم کند. در نهایت نتایج بدست آمده نشان داد ژنوتیپ‌های نسترن وحشی در این تحقیق دارای تنوع ژنتیکی مطلوبی هستند.

کلیدواژه‌ها


Besnard G., Khadari B., Villemur P., and Bervillé A. (2001). Cytoplasmic male sterility in the olive (Olea europaea L.). Theoretical and Applied Genetics, 100: 1018–1024.
Debener T., Dohm A., and Mattiesch L. (2003). Use of diploid self-incompatible rose genotypes as a tool for gene flow analyses in roses. Plant Breeding, 122: 285–287.
Demir F., and Ozcan M. (2001). Chemical and technological properties of rose (Rosa canina L.) fruits grown wild in Turkey. Journal of Food Engineering, 47: 333–336.
Do Val A. D. B., Ferreira J. L., VieriraNeto J., Pasqual M., de Oliviera A. F., Borém A., and Cançado G. M. A. (2012). Genetic diversity of Brasilian and introduced olive germplasm based on microsatellite markers. Genetics and Molecular Research, 11(1): 556–571
Doyle J. J., and Doyle J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.
 Gao X., Bjork L., Trajkovski V., and Uggla M. (2000). Evaluation of antioxidant activities of rose hip ethanol extracts in different test systems. Journal of Science and Food Agriculture, 80: 2012–27.
Hannachi H., Breton C., Msallem M., Ben El Hadj S., El Gazzah M., and Bervillé A. (2010). Genetic relationships between cultivated and wild olive trees (Olea europaea L. var. europaea and var. sylvestris) based on nuclear and chloroplast SSR markers. Natural Resources, 1: 95–103.
Jurgens A. H., Seitz B., and Kowarik I. (2007).Genetic differentiation of Rosa canina at regional and continental scales. Plant Systematics and Evolution, 269: 39–53.
Jurgens A., Seitz H., and Kowarik, B. I. (2009). Genetic differentiation of Rosa canina (L.) at regional and continental scales. Plant Systematics and Evolution, 269: 39–53
Khosroushahi M., Sharafi Y., Sadeghzadeh B., Sadeghzadeh F., and Vafadar U. (2014). Evaluation of genetic diversity of wild roses around Maragheh using ISSR markers. Conference: 1st International and 13th Iranian Genetic Congress, 125–130.
Kimura M., and Weiss G. H. (1964). The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49: 561–576.
Kocovsky P. M., Sullivan T. J. Knigth C. T., and Stepien C. A. (2013). Genetic and mormometric differences demonstrate finescale population substructure of the yellow perch Perca flavescens: need for redefined management units. Journal of Fish Biology, 82(6): 2015–2030.
Lewontin R. C. (1972). Testing the theory of natural selection. Nature, 236: 181–182.
Nei M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583–590
 Nilsson O. R. (1997). Flora of Turkey and the east Aegean islands.(4th Edn.), Davis P. H. (Ed.), Edinburgh: Edinburgh University Press, 106–128.
Percifield R. J., Hawkins J. S., Mccoy J. A., Widrlechner M. P., and Wendel J. F. (2007). Geneticdiversity in Hypericum perforatum and AFLP markers for species–specific identification of H. perforatum L. Plant Medicinal, 739: 1614–1621.
Perrier X., and Jacquemoud-Collet J. P. (2006). Darwin software, http://darwin.cirad.fr/darwin.
Pritchard J. K., Stephens M., and Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155: 945–959.
Rahnavard A., AsadianKhali G., and Mariamalsadat Taghavi P. (2013). Assessing genetic variation of dog rose (Rosa Canina L.) in Caspian climate. Biosciences Biotechnology Research Asia, 10(1): 119–125.
Reddy P. M., Sarla N., and Siddiq E. A. (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128(1): 9–17.
 Samiei L., Naderi R., Khalighi A., Bushehri A., Mozaffarian V., Esselink G. D., and Smulders M. J. M. (2010). In search of genetic diversity in Rosa foetida Herrmann in Iran. Acta Horticulturae, 836: 25–30.
Sarri V., Baldoni L., Porceddu A., Cultrera N. G. M., Contento A., Frediani M., Belaj A., Trujillo I., and Cionini P. G. (2006). Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to defined populations. Genome, 49: 1606–1615
 Tabaei-Aghdaei S. R., Babaei A., Khosh-Khui M., Jaimand K., Rezaee M. B., Assareh M. H., and Naghavi M. R. (2007). Morphological and oil content variations amongst Damask rose (Rosa damascena Mill.) landraces from different regions of Iran. Scientia Horticulturae, 113: 44–48.
Thimmappaiah W., Santhosh D., Shobha G., and Melwyn S. (2009). Assessment of genetic diversity in cashew germplasm using RAPD and ISSR markers. Scientia Horticulturae, 120: 411–417.
Ueda Y., Takeshita D., and Ando T. (1996). Pollination in Rosa rugosa Thunb. ex Murray. Acta Horticulturae, 424: 309–310.
Vijayan K. (2005). Inter simple sequence repeats (ISSR) polymorphism and its application in mulberry genome analysis. International Journal of Industrial Entomology, 10: 79–86.
Winther K., Vinther Hansen A. S., and Campbell-Tofte J. (2015). Bioactive ingredients of rose hips (Rosa canina L.) with special reference to antioxidative and anti-inflammatory properties: in vitro studies. Dove press, 5: 234–251.
Wissemann V., and Hellwig F. H. (1997) Reproduction and hybridisation in the genus Rosa, section Caninae (Ser.) Rehd. Botanica Acta, 110: 251–256.
Yeh F. C., Yang R. C., and Boyle T. (1999). POPGENE 32-version 1.31. Population Genetics Software. ftp://ftp.microsoft.com/Softlib/HPG-L.EXE.