Efficiency of resistance genes in wheat to powdery mildew in some centers of disease incidence in Iran

Document Type : Research paper


1 Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), P. O. Box: 31359-33151, Karaj, Iran

2 Agriculture and Natural Resources Research Center of Golestan, Agricultural Research, Education and Extension Organization (AREEO), Golestan, Iran.

3 Agriculture and Natural Resources Research Center of Mazandaran, Agricultural Research, Education and Extension Organization (AREEO), Mazandaran, Iran.

4 Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.


Wheat powdery mildew caused by fungal pathogen Blumeria graminis f.sp. tritici is a destructive wheat disease, occurring in regions with cool and humid climates. In order to investigate the changes in pathogenicity of the disease and to identify the effective genetic source of resistance, a total of 29 wheat genotypes with different resistance major genes (Pm) were studied in two hotspots of Gorgan and Sari under natural incidence of the disease over 2015-2018. Resistance reaction of the genotypes was evaluated by disease development, disease severity and coefficient of infection. The results indicated that mean of coefficient of infection for Gorgan was larger than that for Sari in all three years of the study. The reaction of some genotypes showed apparent differences between the two regions during the years of study. The highest genetic distance was observed between Ralle (Pm3d) and Holger (Pm6). NK-747 (Pm6) and Maris Huntsman (Pm2+Pm6) as well as Amigo (Pm17) and Maris Huntsman (Pm2+Pm6) showed the highest genetic similarities to each other. A total of 65.78% of the data variation was justified by principal component analysis on the basis of the coefficient of infection. The genotypes Maris Dove (Mld+Pm2), Shamrock (with unknown Pm), Broom (Pm3d) and Axona (Pm2+Pm3d+Mld) expressed effective resistance over the years and locations. The total results of this research indicated variations in the virulence of wheat powdery mildew population during the years of the experiment. This finding emphasizes on the necessity of constant monitoring of the disease in the infected areas. The genes with effective resistance identified in this study could be used in resistance breeding to powdery mildew especially for Gorgan and Sari.


Abdelrhim A., Abd-Alla H. M., Abdou E. S., Ismail M. E., and Cowger C. (2018). Virulence of Egyptian Blumeria graminis f.sp. tritici population and response of Egyptian wheat cultivars. Plant Disease, 102(2): 391-397.
Alam M. A., Xue F., Wang C., and Ji W. (2011). Powdery mildew resistance genes in wheat: identification and genetic analysis. Journal of Molecular Biology Research, 1(1): 20-39.
Bhullar N. K., Street K., Mackay M., Yahiaoui N., and Keller B. (2009). Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proceedings of the National Academy of Sciences, 106(23): 9519-9524.
Bhullar N. K., Zhang Z., Wicker T., and Keller B. (2010). Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC Plant Biology, 10(1): 88-101.
Bougot Y., Lemoine J., Pavoine M. T., Barloy D., and Doussinault G. (2002). Identification of a microsatellite marker associated with Pm3 resistance alleles to powdery mildew in wheat. Plant Breeding, 121(4): 325-329.
Briggle L.W. (1969). Near-Isogenic lines of wheat with genes for resistance to Erysiphe graminis f.sp. tritici. Crop Science, 9(1): 70-72.
Chen Y., and Chelkowski J. (1999). Genes for resistance to wheatpowdery mildew. Journal of Applied Genetics, 4(40): 317-334.
Cowger C., Mehra L., Arellano C., Meyers E., and Murphy J. P. (2018). Virulence differences in Blumeria graminis f.sp. tritici from the central and eastern United States. Phytopathology, 108(3): 402-411.
Geng M., Zhang J., Peng F., Liu X., Lv X., Mi Y., Li Y., Li F., Xie C., and Sun Q. (2016). Identification and mapping of MLIW30, a novel powdery mildew resistance gene derived from wild emmer wheat. Molecular Breeding, 36(9): 130. https://doi.org/10.1007/s11032-016-0553-0.
Imani Y., Ouassou A., and Griffey C. A. (2002).Virulence of Blumeria graminis f.sp. tritici populations in Morocco. Plant Disease, 86(4): 383-388.
Janáková E., Jakobson I., Peusha H., Abrouk M., Škopová M., Šimková H., Šafář J., Vrána J., Doležel J., Järve K., and Valárik M. (2019). Divergence between bread wheat and Triticumm ilitinae in the powdery mildew resistance QPm.tut-4A locus and its implications for cloning of the resistance gene. Theoretical and Applied Genetics, 132(4): 1061-1072.
Johnson R., Wolfe M. S., and Scott P. R. (1969). Diseases of wheat. Plant Breeding Institute Annual Report, pp. 116.
Karimi-Jashni M., Torabi M., Roustaie A., Etebarian H., Okhovat S., Razavi M., and Yazdanpanah F. (2006). Pathotypes of Blumeria graminis f.sp. tritici the causal agent of powdery mildew from some regions of Iran. Seed and Plant, 22(2): 257-271.
Koller T., Brunner S., Herren G., Hurni S., and Keller B. (2018). Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field. Theoretical and Applied Genetics, 131(4): 861-871.
Limpert E., Godet F., and Müller K. (1999). Dispersal of cereal mildews across Europe. Agricultural and Forest Meteorology, 97(4): 293-308.
Liu N., Bai G., Lin M., Xu X., and Zheng W. (2017). Genome-wide association analysis of powdery mildew resistance in US Winter Wheat. Scientific Reports, 7(1): 11743.
Liu N., Liu Z. L., Gong G., Zhang M., Wang X., Zhou Y., Qi X., Chen H., Yang J., Luo P., and Yang, C. (2015).Virulence structure of Blumeria graminis f.sp. tritici and its genetic diversity by ISSR and SRAP profiling analyses. PlOS One, 10(6): e0130881.
Ma P., Xu H., Xu Y., Li L., Qie Y., Luo Q., Zhang X., Li X., Zhou Y., and An D. (2015). Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939. Theoretical and Applied Genetics, 128(4): 613-622.
McIntosh R. A., and Baker E. P. (1970). Cytogenetic studies in wheat. IV. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica, 19: 71-77.
Menzies J. G., and MacNeill B. H. (1986). Asexual recombination in Erysiphe graminis f.sp. tritici. Canadian Journal of Plant Pathology, 8(4): 400-404.
Monazzah M., Torabi M., Rezaie S., and Razavi M. (2008). Pathotypes of Blumeria graminis f.sp. tritici, the causal agent of wheat powdery mildew from some regions of Iran. Seed and Plant, 24(1): 161-176.
Niewoehner A. S., and Leath S. (1998). Virulence of Blumeria graminis f.sp. tritici on winter wheat in the eastern United States. Plant Disease, 82(1): 64-68.
Persaud R. R., and Lipps P. E. (1995). Virulence genes and virulence gene frequencies of Blumeria graminis f.sp. tritici in Ohio. Plant Disease,79(5): 494-499.
Razavi M., Karimi-Jashni M., Dehghan M. A.,Safavi S. A., and Barari H. (2010). Study on the variability for virulence in Blumeria graminis f.sp. tritici cause of wheat powdery mildew using trap nursery in Iran. Applied Entomology and Phytopathology, 78(1): 97-106.
Saari E. E., and Prescott J. M. (1975). A scale for appraising the foliar intensity of wheat disease. Plant Disease Reporter, 59: 377-380.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27: 379-423.
Srichumpa P., Brunner S., Keller B., and Yahiaoui N. (2005). Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiology, 139(2): 885-895.
Stubbs R.W., Prescott J. M., Saari E. E., and Dubin H. J. (1986). Cereal disease methodology manual. CIMMYT, Mexico, pp. 46.
Švec M., and Miklovičová M. (1998). Structure of populations of wheat powdery mildew (Erysiphe graminis DC f.sp. tritici Marchal) in Central Europe in 1993–1996: I. Dynamics of virulence. European Journal of Plant Pathology, 104(6): 537-544.
Tan C., Li G., Cowger C., Carver B. F., and Xu X. (2018). Characterization of Pm59, a novel powdery mildew resistance gene in Afghanistan wheat landrace PI 181356. Theoretical and Applied Genetics, 131(5): 1145-1152.
Tommasini L., Yahiaoui N., Srichumpa P., and Keller B. (2006). Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theoretical and Applied Genetics, 114(1): 165-175.
Wolfe M. S. (1967). Physiologic specialization of Erysiphe graminis f. sp. tritici in the United Kingdom, 1964-5. Transactions of the British Mycological Society, 50: 631-640.
Wricke G. (1962). Uber eine methode zur erfassung der okologischen streubreite in feldversuchen. Zeitschrift Fur Pflanzenzuchtung-Journal of Plant Breeding, 47: 92-96.
Yahiaoui N., Brunner S., and Keller B. (2006). Rapid generation of new powdery mildew resistance genes after wheat domestication. The Plant Journal, 47(1): 85-98.
Yahiaoui N., Srichumpa P., Dudler R., and Keller B. (2004) Genome analysis at different ploidy levels allows cloning of the powderymildew resistant gene Pm3b from hexaploid wheat. The Plant Journal, 37(4): 528-538.
Yu S., Long H., Deng G., Pan Z., Liang J., and Yu M. (2015). Localization of the powdery mildew resistance gene Pm07J126 in wheat (Triticum aestivum L.). Euphytica, 205(3): 691-698.
Zahravi M., Mansourian M. R. ,Azimi H. , Dehghan M. A. , Allahyari N., and Alitabar, R. (2018). Investigation of resistance of Iranian bread wheat landraces to powdery mildew disease. Iranian Journal of Field Crop Science, 49(3): 151-165.
Zeng F. S., Yang L. J., Gong S. J., Shi W. Q., Zhang X. J., Wang H., Xiang L. B., Min-Feng X. U. E., and YU D. Z. (2014). Virulence and diversity of Blumeria graminis f.sp. tritici populations in China. Journal of Integrative Agriculture, 13(11): 2424-2437.