Induction of symmetrical nucleus division and multi-nuclear structures in isolated microspores of sugarcane (Saccharum officinarum L.)

Document Type : Research paper

Authors

1 Department of Tissue and Cell Culture, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), P. O. Box: 31359-33151, Karaj, Iran.

2 Payame Noor University, Tehran, Iran.

3 (SPII), (AREEO), Karaj, Iran.

4 Sugarcane Research and Training Institute of Khuzestan, Ahvaz, Iran.

Abstract

In this study, the effects of floret sterilization with sodium hypochlorite, cold stress, heat shock, 2,4-dichlorophenoxyacetic acid and colchicine treatment on microspore viability and induction of symmetrical nuclei divisions were assessed in six genotypes of sugarcane. The highest microspore viability was observed when florets were sterilized with 3.0% and 3.5% sodium hypochlorite in all genotypes tested. More viable microspores were obtained in the cultures exposed to 4 °C. A sharp decrease was observed in viability at higher temperature pretreatments in all genotypes tested. Microspores with 6-10 nuclei were achieved in cultivars ‘L62-96’ and ‘CP57-614’ (5% and 18%) when cultures were pretreated at 4 °C. The nuclei division was strongly inhibited in the cultures exposed to 33 °C and 37 °C. High frequency of 3-5 nuclei microspores were obtained when 25 and 50 mg l-1 2,4-D were applied in the induction medium. Multinuclear microspores were only observed in cultivars ‘L62-96’ and ‘CP57-614’ (4% and 16%) and in the presence of 25 mg l-1 colchicine, however, its higher level (100 mgl-1) strongly inhibited nuclei division of cultured microspores. Symmetrical nucleus division could be induced in microspores of sugarcane when appropriate genotypes, temperature pretreatment and optimum level of 2,4-D and colchicine were used.

Keywords


Abraha E., Klíma M., Vyvadilová M., and Bechyne M. (2008). Effectiveness of selected antimitotic agents in microspore culture for Brassica carinata doubled haploid production. Agricultura Tropica et Subtropica, 41(4): 137-149.        
Agarwal P. K., Agarwal P., Custers J. B., Liu C. M., and Bhojwani, S. S. (2006). PCIB an antiauxin enhances microspore embryogenesis in microspore culture of Brassica juncea. Plant Cell, Tissue and Organ Culture, 86(2): 201-210.
Ahmadi B., Ghadimzadeh M., Moghaddam A. F., Alizadeh K., and Teixeira da Silva J. A. (2012a). Bud length, plating density, and incubation time on microspore embryogenesis in Brassica napus. International Journal of Vegetable Science, 18(4): 346-357.
Ahmadi B., Khoshnood A., and Teixeira da Silva J. A. (2012b). Enhanced regeneration of haploid plantlets from microspores of Brassica napus L. using bleomycin, PCIB, and phytohormones. Plant Cell, Tissue and Organ Culture, 109(3): 525-533.  
Ahmadi B., Shariatpanahi M. E., and Teixeira da Silva J. A. (2014a). Efficient induction of microspore embryogenesis using abscisic acid, jasmonic acid and salicylic acid in Brassica napus L. Plant Cell, Tissue and Organ Culture, 116(3): 343-351.     
Ahmadi B., Shariatpanahi M. E., Aghapour Ojaghkandi M., and Heydari A. A. (2014b). Improved microspore embryogenesis induction and plantlet regeneration using putrescine, cefotaxime and vancomycin in Brassica napus L. Plant Cell, Tissue and Organ Culture, 118: 497-505.
Ardebili S. H., Shariatpanahi M. E., Amiri R., Emamifar M., Nematzadeh G., Sadat Noori S. A., Oroojloo M. and Heberle-Bors E. (2011). Effect of 2, 4-D as a novel inducer of embryogenesis in microspores Brassica napus L. Czech Journal of Genetic and Plant Breeding, 47(3): 114-122.            
Ayed O. S., De Buyser J., Picard E., Trifa Y., and Amara, H. S. (2010). Effect of pretreatment on isolated microspores culture ability in durum wheat (Triticum turgidum subsp. durum Desf.). Journal of Plant Breeding and Crop Science, 2(2): 030-038.          
Babbar S. B., Agarwal P. K., Sahay S., and Bhojwani S. S. (2004). Isolated microspore culture of Brassica: an experimental tool for developmental studies and crop improvement. Indian Journal of Biotechnology, 3(2): 185-202.
Brew-Appiah R. A., Ankrah N., Liu W., Konzak C. F., von Wettstein D., and Rustgi S. (2013). Generation of doubled haploid transgenic wheat lines by microspore transformation. Public Library of Science (PloS) one, 8(11): e80155.             
Caperta A. D., Delgado M., Ressurreição F., Meister A., Jones R. N., Viegas W., and Houben A. (2006). Colchicine-induced polyploidization depends on tubulin polymerization in c-metaphase cells. Protoplasma, 227(2-4): 147-153.
Dehestani-Ardakani M., Shariatpanahi M. E., and Kafi M. (2016). Investigation of the Effects of Temperature and Starvation Stresses on Microspore Embryogenesis in Two Tetraploid Roses (Rosa Hybrida L.). Scientia Agriculture, 14(2): 220-227.
Dahlia L., Kurniawan I., Anggakusuma D., and Roshetko J. M. (2009). Consumer preference for indigenous vegetables. World Agroforestry Center.    
Dorléans A., Gigant B., Ravelli R. B., Mailliet P., Mikol V., and Knossow M. (2009). Variations in the colchicine-binding domain provide insight into the structural switch of tubulin. Proceedings of the National Academy of Sciences, 106(33): 13775-13779.     
Dudits D., Györgyey J., Bögre L., and Bakó L. (1995).  Molecular biology of somatic embryogenesis. In vitro embryogenesis in plants, Springer, 267-308.        
Fan Z., Armstrong K. C., and Keller W. A. (1988). Development of microsporesin vivo andin vitro in Brassica napus L. Protoplasma, 147(2-3): 191-199.      
Feher A., Pasternak T. P., and Dudits D. (2003). Transition of somatic plant cells to an embryogenic state. Plant cell, tissue and organ culture, 74(3): 201-228.
Fitch M. M., and Moore P. H. (1983). Haploid Production From Anther Culture of Saccharum spontaneum L. Zeitschrift für Pflanzenphysiologie, 109(3): 197-206.   
Fowler M. R., Ong L. M., Russinova E., Atanassov A. I., Scott N. W., Slater A., and Elliott, M. C. (1998). Early changes in gene expression during direct somatic embryogenesis in alfalfa revealed by RAP-PCR. Journal of Experimental Botany, 49(319): 249-253.
Gu H. H., Hagberg P., and Zhou W. J. (2004). Cold pretreatment enhances microspore embryogenesis in oilseed rape (Brassica napus L.). Plant Growth Regulation, 42: 137-143.   
Hanlon D., McMahon G. G., McGuire P., Beattie R. N., and Stringer J. K. (2000). Managing low sugar prices on farms-short-term and longer-term strategies. In Proceedings of the 2000 Conference of the Australian Society of Sugar Cane Technologists held at Bundaberg, Queensland, Australia, 2-5 May, PK Editorial Services, 1-8.
Heslop-Harrison J., and Heslop-Harrison Y. (1970). Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technology, 45(3): 115-120.           
Herrera J. C., Moreno L. G., Acuna J. R., De Pena M., and Osorio D. (2002). Colchicine-induced microspore embryogenesis in coffee. Plant cell, Tissue and Organ Culture, 71(1): 89-92.       
Jacquard C., Mazeyrat-Gourbeyre F., Devaux P., Boutilier K., Baillieul F., and Clément C. (2009). Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta, 229(2): 393-402.
Kasha K. J., Simion E., Oro R., Yao Q. A., Hu T. C., and Carlson A. R. (2002). An improved in vitro technique for isolated microspore culture of barley. Mutations, In Vitro and Molecular Techniques for Environmentally Sustainable Crop Improvement, Springer, 45-54.
Khound R., Santra M., Baenziger P. S., and Santra D. K. (2013). Effect of Cold-Mediated Pretreatment on Microspore Culture in Winter and Spring Wheat. American Journal of Plant Sciences, 4(11): 2259.
Lakshmanan P., Geijskes R. J., Aitken K. S., Grof C. L., Bonnett G. D., and Smith G. R. (2005). Sugarcane biotechnology: the challenges and opportunities. In Vitro Cellular and Developmental Biology-Plant, 41(4): 345-363.
Lichter R. (1982). Induction of haploid plants from isolated pollen of Brassica napus. Zeitschrift für Pflanzenphysiologie, 105(5): 427-434.
Liu S., Wang H., Zhang J., Fitt B. D., Xu Z., Evans N., Liu Y., Yang W., and Guo X. (2005). In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Reports, 24(3): 133-144.
Maillot P., Lebel S., Schellenbaum P., Jacques A., and Walter B. (2009). Differential regulation of SERK, LEC1-Lik and Pathogenesis-Related genes during indirect secondary somatic embryogenesis in grapevine. Plant Physiology and Biochemistry, 47(8): 743-752.
Maraschin S. D. F., De Priester W., Spaink H. P., and Wang M. (2005). Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. Journal of Experimental Botany, 56(417): 1711-1726.
Moraes A. P. D., Bonadese-Zanettini M. H., Callegari-Jacques S. M., and Kaltchuk-Santos E. (2004). Effect of temperature shock on soybean microspore embryogenesis. Brazilian Archives of Biology and Technology, 47(4): 537-544.
Obert B., and Barnabás B. (2004). Colchicine induced embryogenesis in maize. Plant cell, Tissue and Organ Culture, 77(3): 283-285.         
Prem D., Gupta K., and Agnihotri A. (2005). Effect of various exogenous and endogenous factors on microspore embryogenesis in indian mustard (Brassica juncea (L.) Czern and Coss). In Vitro Cellular & Developmental Biology-Plant, 41(3): 266-273.           
Rodrigues L. R., Forte B. D. C., Oliveira J. M. S., Mariath J. E. A., and Bodanese-Zanettini M. H. (2004). Effects of light conditions and 2, 4-D concentration in soybean anther culture. Plant Growth Regulation, 44(2): 125-131.               
Rubtsova M., Gnad H., Melzer M., Weyen J., and Gils M. (2013). The auxins centrophenoxine and 2, 4-D differ in their effects on non-directly induced chromosome doubling in anther culture of wheat (T. aestivum L.). Plant Biotechnology Reports, 7(3): 247-255.
Seguí-Simarro J. M., and Nuez F. (2007). Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. Journal of Experimental Botany, 58(5): 1119-1132.
Shariatpanahi M. E., Bal U., Heberle-Bors E., and Touraev A. (2006). Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiologia Plantarum, 127(4): 519-534.
Soriano M., Cistué L., Vallés M. P., and Castillo A. M. (2007). Effects of colchicine on anther and microspore culture of bread wheat (Triticum aestivum L.). Plant Cell, Tissue and Organ Culture, 91(3): 225-234.
Touraev A., Pfosser M., Vicente O., and Heberle-Bors E. (1996). Stress as the major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Planta, 200(1): 144-152.
Zhao J., Newcomb W., and Simmonds D. (2003). Heat-shock proteins 70 kDa and 19 kDa are not required for induction of embryogenesis of Brassica napus L. cv. Topas microspores. Plant and Cell Physiology, 44(12): 1417-1421.
Zheng Q., and Perry S. E. (2014). Alterations in the Transcriptome of Soybean in Response to Enhanced Somatic Embryogenesis Promoted by Orthologs of AGAMOUS-Like15 and AGAMOUS-Like18. Plant Physiology, 164(3): 1365-1377.     
Zheng Q., Zheng Y., and Perry S. E. (2013). AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response. Plant physiology, 161(4): 2113-2127.           
Zhou W. J., Tang G. X., and Hagberg P. (2002). Efficient production of doubled haploid plants by immediate colchicine treatment of isolated microspores in winter Brassica napus. Plant Growth Regulation, 37(2): 185-192.         
Żur I., Dubas E., Golemiec E., Szechyńska-Hebda M., Gołębiowska G., and Wędzony M. (2009). Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (x Triticosecale Wittm.). Plant Cell Reports, 28(8): 1279-1287.             
Żur I., Dubas E., Golemiec E., Szechyńska-Hebda M., Janowiak F., and Wędzony M. (2008). Stress-induced changes important for effective androgenic induction in isolated microspore culture of triticale (×Triticosecale Wittm.). Plant Cell, Tissue and Organ Culture, 94(3): 319-328.