طراحی قطعات وارونه ژنتیکی موثر با ارزیابی کامل جهش های ناحیه بذری siRNAs در اپی توپ های امگاگلیادین

نویسندگان

1 گروه بیوتکنولوژی، دانشگاه پیام نور، تهران، ایران، کدپستی: 3697-19395.

2 مرکز تحقیقات گیاهان دارویی، پژوهشگده گیاهان دارویی جهاد دانشگاهی، کرج ایران.

چکیده

مکانیسم RNAi نقش مهمی در خاموشی بیان ژن‌های هدف توسط siRNA به عهده دارد. در تحقیق حاضر، خصوصیات in silico 30 ژن در امگا-2 گلیادین و ارزیابی جهش‌های قطعات 266 نوکلئوتیدی و 326 نوکلئوتیدی قبل و بعد از کلونینگ و توالی‌یابی برای اتصال در وکتور بیانی بررسی شدند. در این روش، پرایمرهای مخصوص برای توالی‌های 30 ژن با ناحیه جداکننده 75 و 178 نوکلئوتید (برای ژن تکراری وارونه) طراحی گشتند. فراوانی محل siRNA و جهش های نوکلئوتیدی A/U بهG/C با استفاده از آنالیز‌های in silico برای mRNA هدف شناسایی شدند. نتایج نشان دادند که توالی تکراری وارونه شامل ناحیه جداکننده 178 نوکلئوتیدی محتوی یک ژن هدف موثر بدون زوج‌های ناجور از A/U به G/C می‌باشد. در تحقیق حاضر، برای ساخت RNAi، به جای توالی اینترون، ناحیه جداکننده با قطعات طولانی طراحی گشت. همچنین، پرداختن به مشاهده  بیشتر نوکلئوتیدهای ناجور در siRNA و همچنین طول ناحیه جدا کننده قبل و بعد از کلونینیگ موجب کاهش در زمان حذف اینترون گرید. نتایج حاکی از آن است که حذف اپی‌توپ‌های آنافیلاکسی وابسته به فعالیت‌های بدنی و بیماری سلیاک می‌تواند بعد از مقایسه با یک روش کاربردی مناسب و با اتصال به یک وکتور باکتریایی ایجاد گردد.

کلیدواژه‌ها


Ahmed F., and Raghava, G. P. S. (2011). Designing of Highly Effective Complementary and Mismatch siRNAs for Silencing a Gene. Public Library of Science (PLOS) One, 6(8): e23443
Anderson O. D., Gu Y. Q., Kong X., Lazo G. R., and Wu J. (2009). The wheat ω-gliadin genes: structure and EST analysis. Functional and Integrative Genomics, 9: 397–410.
Altenbach S. B., and Allen P. V. (2011). Transformation of the US bread wheat ‘Butte 86’ and silencing of omega-5 gliadin genes. Genetically Modified Crops, 2(1): 66–73.
Altenbach S. B., Tanaka C. K., and Allen P. V. (2013). Quantitative proteomic analysis of wheat grain proteins reveals differential effects of silencing of omega-5 gliadin genes in transgenic lines. Journal of Cereal Science, 59:118–125.
Battais F., Mothes T., Moneret-Vautrin D. A., Pineau F., Kanny G., Popineau Y., Bodinier M., and DeneryPapini S. (2005). Identification of IgE-binding epitopes on gliadins for patients with food allergy to wheat. Allergy, 60: 815–821.
Christensen A. H., and Quail P. H. (1996). Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research, 5: 213–218.
Dahlgren C., Zhang H. Y., Du Q., Grahn M., Norstedt G. and Wahlestedt C. and Liang Z. (2008). Analysis of siRNA specificity on targets with double-nucleotide mismatches. Nucleic Acids Research, 36(9): 1–7.
Du Q., Thonberg H., Wang J., Wahlestedt C., and Liang Z. (2005). A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Research, 33: 1671–1677.
Ensari A., Marsh M. N., Moriarty K. J., Moore C. M., Fido R. J., and Tatham A.S. (1998). Studies in vivo of ω-gliadins in gluten sensitivity (coeliac sprue disease). Clinical Science, 95: 419–424.
Gil-Humanes J., Piston F., Tollefsen S., Sollid L. M., and Barro F. (2010). Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proceedings of the National Academy of Sciences USA, 39: 17023–17028.
Liu Y. P., Schopman N. C. T., and Berkhout Ben. (2013). Dicer-independent processing of short hairpin RNAs. Nucleic Acids Research, 41(6): 3723–3733.
Markham N. R., and Zuker M. (2008). UNAFold: software for nucleic acid folding and hybridization. Methods in Molecular Biology, 453: 3–31.
Matsuo H., Morita E., Tatham A. S., Morimoto K., Horikawa T., Osuna H., Ikezawa Z., Kaneko S., Kohno K., and Dekio S. (2004). Identification of the IgE-binding epitope in omega-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis. Journal of Biological Chemistry, 279: 12135–12140.
Matveeva O., Nechipurenko Y., Rossi L., Moore B., Saetrom P., Ogurtsov A. Y., Atkins J. F., and Shabalina S. A. (2007). Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Research, 35(8): 1–10.
Murray M. G., and Thompson W. F. (1980). Rapid isolation of high weight plant DNA. Nucleic Acids Research, 8: 4321–4325.
Nishimura K., Hirai S., and Kodama H. (2009). Effects of siRNAs targeting the spacer sequence of plant RNAi vectors on the specificity and efficiency of RNAi. Journal of Bioscience and Bioengineering, 108(5): 435–437.
Jiang Y., Xie M., Zhu Q., Ma X., Li X., Liu Y., and Zhang Q. (2013). One-step cloning of intron-containing hairpin RNA constructs for RNA interference via isothermal in vitro recombination system. Planta, 238: 325–30.
Tada Y., Nakase M., Adachi T., Nakamura R., Shimada H., Takahashi M., Fujimura T., and Matsuda T. (1996). Reduction of 14-16 kDa allergenic proteins in transgenic rice plants by antisense gene. Federation of European Biochemical Societies (FEBS) Letters, 391: 341–345.
Tang G., Reinhart B. J., Bartel D. P., and ZamoreP. D. (2003). A biochemical framework for RNA silencing in plants. Genes Development, 17: 49–63.
Thompson J. D., Higgins D. G., and Gibson T J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22): 4673–4680
Saurabh S., Vidyarthi A. S., and Prasad D. (2014). RNA interference: concept to reality in crop improvement. Planta, 239: 543–564.
Senthil-Kumar M., and Mysore K. S. (2011). Caveat of RNAi in plants: the off-target effect. Methods in Molecular Biology, 744:13–25.
Sambrook J., and Russell D. W. (2001). Molecular cloning: a laboratory manual. Cold Spring Harbor laboratory Press, Cold Spring Harbor, NY, USA.
Wang L., and Mu F. Y. (2004). A Web-based design center for vector-based siRNA and siRNA cassette. Bioinformatics Applications Note, 20(11): 1818–1820.
Wang A., Gao L., Li X., Zhang Y., He Z., Xia X., Zhang Y., and Yan Y. (2008). Characterization of two 1D-encoded ω-gliadin subunits closely related to dough strength and pan bread-making quality in common wheat (Triticum aestivum L.). Journal of Cereal Science, 47: 528–535.
Waga J. (2004). Structure and allergenicity of wheat gluten proteins. Polish Journal of Food and Nutrition Sciences, 13(54): 327–338.
Wieser H. (2007). Chemistry of gluteninproteins. Food Microbiology, 24: 115–119.