Molecular and biochemical evaluation related to fragrance in some Iranian rice varieties

Document Type: Research paper

Authors

1 Department of Biotechnology and Plant Breeding, Islamic Azad University, Science and Research Branch, P. O. Box: 147789-3855, Tehran, Iran.

2 Department of Plant Breeding, Yadegare-e-Imam Komeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.

Abstract

Rice fragrance is one of the most important and determining factors in rice quality. Aromatic rice is a special group considered to be of the best quality. It is important to know the physiological behavior and genetic source of aromatic rice in order to improve breeding programs. In this research, thirteen rice cultivars were used for molecular and biochemical evaluations. The research population included three aromatic cultivars and ten cultivars from Khuzestan province in Iran. Thirteen SSR and four MAS markers related to grain aroma were used for genotyping the rice cultivars. The highest PIC for SSR markers was 0.75. Cluster analysis using the UPGMA method classified all cultivars into three groups. The results of MAS for EAP and INSP primers showed a molecular band of 355 bp in the non-aromatic rice cultivars. In this study, four non-aromatic cultivars (Hamar (Sorkheh), Danial, Garde Ramhormoz, and Hoveizeh) were detected. The results of IFAP and ESP primers further revealed a band of 257 bp, identified in Tarom, Domsiah, Basmati, Anbarbo Najafi, Anbarbo Red, Anbarbo Yellow, Kadoos, Champa, and Shafagh, all aromatic cultivars. Moreover, the volatile components of rice seed samples were extracted and identified using the sensitive and efficient solid phase extraction method, GC-MS. Eight compounds (aldehyde, pentane, hexanal, heptane, tetradecane, ketone, acetic acid, and 2-acetyl-1-pyrroline) were identified from the studied cultivars as the most important chemical compositions of aroma in rice. The 2-AP compound was recognized in Tarom, Domsiah, and Anbarbo Najafi cultivars. Finally, four MAS primers identified all aromatic rice cultivars as well as thirteen SSR markers related to rice fragrance.

Keywords


Agrama H. A., and Tuinstra M. R. (2003). Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. African Journal of Biotechnology, 2: 334–340.

Ahn S. N., Bollich C. N., and Tanksley S. D. (1992). RFLP tagging of a gene for aroma in rice. Theoretical and Applied Genetics, 84: 825–828.

Ashfaq M., Farooq H. U., Sabar M., Ali A., and Ali M. (2015). Molecular screening of aroma genes in indigenous and exotic rice germplasm. https://www.researchgate.net/publication,311575183.

Bergman C. J., Delgado J. T., Bryant R., Grimm C., Cadwallader K. R., and Webb B. D. (2000). Rapid gas chromatographic technique for quantifying 2-acetyl-l-pyrroline and hexanal in rice (Oryza sativa L.). Cereal Chemistry, 77: 454–458.

Botstein D., white R. L., Skolnick M., and Davis R. W. ( 1980). Construction of a genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics, 32(3): 314–331.

Bourgis F., Guyot R., Gherbi H., Tailliez E., Amabile I., Salse J., Lorieux M., Delseny M., and Ghesquière A. (2008). Characterization of the major fragance gene from an aromatic japonica rice and analysis of its diversity inAsian cultivated rice. Theoretical and Applied Genetics, 117: 353–368.

Bradbury L. M. T., Henry R. J., Jin Q. S., Reinke R. F., and Waters D. L. E. (2005). A perfect marker for fragrancegenotyping in rice. Molecular Breeding, 16: 279–283.

Bullard R.W., and Holguin G. (1977).Volatile components of unprocessed rice (Oryza sativa). Journal of Agricultural and Food Chemistry, 25(1): 99–103. DOI: 10.1021/jf60209a050.

Buttery R. G., Ling L. C., Juliano B. O., and Turnbaugh J. G. (1983). Cooked rice aroma and 2-acetyl-1-pyrroline. Journal of Agricultural and Food Chemistry, 31: 823–826.

Buttery R., Turnbaugh J., and Ling L. (1988). Contributions of volatiles to rice aroma. Journal of Agricultural and Food Chemistry, 36: 1006–1009.

Eisert R., and Pawliszyn J. (1997). New trends in solid-phase microextraction. Critical Reviews in Analytical Chemistry, 27(2): 103–135.

Fahliani A. R., Khodambashi M., and Ghiasvand A. R. (2013). Identification of rice aromatic compounds by solid phase micro-extraction method inGC-MS and mapping their controlling QTLs using microsatellite marker. Journal of Agricultural Biotechnology, 5(3): 19–31.

Ghiasvand A. R., Setkova L., and Pawliszyn J. (2007). Determination of flavour profile in Iranian fragrant rice samples using cold-fibre spme–gc–tof–ms. Flavour and Fragrance Journal, 22(5): 377–391. Doi: 10.1002/ffj.1809.

Grimm C. C., Bergman C., Delgado J. T., and Bryant R. (2001). Screening for 2-acetyl-1-pyrroline in the headspaceof rice using SPME/GC–MS. Journal of Agricultural and Food Chemistry, 49: 245–249.

Huabing L., Ya D., Chuntai W., and Xin X. (2016). A high-throughput DNA extraction method from rice seeds. Biotechnology & Biotechnological Equipment, 30(1): 32–35. DOI: 10.1080/13102818. 2015.1088401.

Kibria k., Nur F., Begum S. N., Islam M. M., Paul S. K., Rahman K. S., and Azam S. M. M. (2009). Molecular marker based genetic diversity analysis in aromatic ricegenotypes using Ssr and Rapd markers. International Journal of Sustainable Crop Production, 4(1): 23–34.

Laguerre M., Mestres C., Davrieux F., Ringuet J., and Boulanger R. (2007). Rapid discrimination of scented rice by solid phase microextraction, mass spectrometry and multivariate analysis used as a mass sensor. Journal of Agricultural and Food Chemistry, 55: 1077–1083.

Lang N. T., and Buu B. C. (2008). Development of PCR-based markers for aroma (fgr) gene in rice (Oryza sativa L.). Omonrice, 16: 16–23.

Lorieux M., Petrov M., Huang N., Guiderdoni E., and Ghesquiere A. (1996). Aroma in rice: genetic
analysis of a quantitative trait. Theoretical and Applied Genetics, 93: 1145–1151.

Ma H., Yin Y., Guo Z. F., Chen L. J., Zhang L., Zhong M., and Shao G. J. (2011). Establishment of DNA fingerprinting of Liaojing series of Japonica rice. Middle-East Journal of Scientific Research, 8(2): 384–392.

Nadaf A. B., Krishnan S., and Wakte K. V. (2006). Histochemical and biochemical analysis of major aroma compound (2-acetyl-1-pyrroline) in Basmati and other scented rice (Oryza sativa L). Current Science, 91: 1533–1536.

Nagaraju J., Kathirvel M., Kumar R. R., Siddiq E. A., and Hasnain S. E. (2002). Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. Proceedings of the National Academy of Sciences of the United States of America, 99: 5836–584.

Palanga K., Traore K., Bimpong K., Jamshed M., and Mkulama M. (2016). Genetic diversity studies on selected rice varieties grown in Africa based on aroma, cooking and eating quality. African Journal of Biotechnology, 15(23): 1136–1146.

Perez C. M., and Juliano B. O. (1988). Varietal differences in quality characteristics of rice layer cakes andfermented cakes. Cereal Chemistry, 65: 40–43.

Pico Y., Fernandez M., Ruiz M. J., and Font G. (2007). Current trends in solid-phasebased extraction techniques for the determination of pesticides in food and environment. Journal of Biochemical and Biophysical Methods, 70: 117–131.

Powel W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S., and Rafalski A. (1996). Comparison of RFLP, RAPD, AFLP and SSR markers for germplasm analysis. Molecular Breeding, 2(3): 225–238.

Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S., and Rafalski A. (1996). Comparison of RFLP, RAPD, AFLP and SSR markers for germplasm analysis. Molecular Breeding, 2(3): 225–238.

Prathepha P. (2012). Genetic diversity and population structure of wild rice, Oryza rufipogon from North Eastern Thailand and Laos. Australian Journal of Crop Science, 6(4): 717–723.

Ribeiro-Carvalho C., Guedes-Pinto H., Igrejas G., Stephenson P., Schwarzacher T., and Heslop-Harrison J. S. (2004). High levels of genetic diversity throughout the range of the Portuguese wheat landrace ‘Barbela. Annals of Botany, 94(5): 699–705.

Sajib A. A., Bhuiya M. A. I., and Huque R. (2017). A simple, efficient and rapid method for good quality DNAextraction from rice grains. Rice Science, 24(2): 119–122.

Sajib A. M., Musharaf Hossain Md., Mosnaz A. T. M. J., Hossain H., Monirul Islam Md., Shamsher Ali Md., and Prodhan S. H. (2012). SSR marker-based molecular characterizationand genetic diversity analysis of aromaticlandreces of rice (Oryza sativa L.). Journal of BioScience and Biotechnology, 1(2): 107–116.

Singh R. K., Singh U. S., and Khush G. S. (2000). Aromatic rice. Oxford and IBH publishing Co. PVT. Ltd., New Delhi.

Singh V., Roychand P., Brar M. S., and Malhi S. S. (2010). Arsenic in water, soil, and rice plants in the indo-gangetic plains of northwestern India. Communications in Soil Science and Plant Analysis, 41(11): 1350–1360. DOI: 10.1080/00103621003759353.

Soria A. C., Sanz J., and Martinez-Castro I. (2009). SPME followed by GC–MS: A powerful technique for qualitative analysis of honey volatiles. European Food Research and Technology, 228: 579–590.

Sriseadka T., Wongpornchai S., and Kitsawatpaiboon P. (2006). Rapid method for quantitative analysis of the aroma impact compound, 2-acetyl-1-pyrroline, in fragrant rice using automated headspace gas chromatography. Journal of Agricultural and Food Chemistry, 54: 8183–8189.

Stashenko E. E., and Martinez J. R. (2007). Sampling volatile compounds from natural products with headspace/solid-phase micro-extraction. Journal of Biochemical and Biophysical Methods, 70: 235–242.

Sun S. X., Gao F. Y., Lu X. J., Wu X. J., Wang X. D., Ren G. J., and Luo H. (2008). Genetic analysis and gene fine mapping of aroma in rice (Oryza sativa L. Cyperales, Poaceae). Genetics and
Molecular Biology
, 31: 532–538.

Tava A., and Bocchi S. (1999). Aroma of cooked rice (Orvza sativa): Comparison between commercial Basmati and Italian line 135–3. Cereal Chemistry, 76: 526–529.

Temnykh S., Park W. D., Ayres N., Cartinhour S., Hauck N., Lipovich L., Cho Y. G., Ishii T., and McCouch S. R. (2000). Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics, 100(5): 697–712.

Widjaja R., Craske J. D., and Wootton M. (1996). Comparative studies on volatile components of non-fragrant and fragrant rices. Journal of the Science of Food and Agriculture, 70: 151–161.

Wongpornchai S., Sriseadka T., and Choonvisase S. (2003). Identification and quantitation of the rice aroma compound, 2-acetyl-1- pyrroline, in bread flowers (Vallaris glabra Ktze). Journal of Agricultural and Food Chemistry, 51: 457–462.

Yoshihashi T. (2002). Quantitative analysis on 2-acetyl-1-pyrroline of aromatic riceby stable isotope dilution method and model studies on its formation duringcooking. Journal of Food Science, 67(2): 619–622.