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ABSTRACT INFO ABSTRACT

Research Paper In this study, various statistical methodologies, including Additive Main effects and 
Multiplicative Interaction (AMMI) and Best Linear Unbiased Prediction (BLUP), 
were employed to identify high-yielding rainfed barley genotypes that are suitable 
for the cold and rainy regions of Iran. The experimental design comprised 25 barley 
cultivars and lines, along with three check cultivars, arranged in a randomized 
complete block design with four replications over three crop years (2017-2020). 
The AMMI analysis revealed that certain genotypes, specifically G15 and G21, 
demonstrated stability and adaptability across diverse environments, consistently 
yielding higher than other genotypes. Following the estimation of best linear 
unbiased predictions and conducting a stability analysis via the AMMI method, 
it was found that the highest yields were recorded in genotypes G6, G7, G15, 
G21, and G22, whereas the lowest yields were associated with genotypes G12, 
G25, G26, G27, and G28. According to the BLUP indices, genotypes G6, G15, 
G21, G20, G22, G17, G7, G9, and G19 were identified as superior in terms of 
grain stability and yield relative to the other genotypes. In the stability assessment 
utilizing a third-type biplot (yield versus WAASB (Weighted Average of Absolute 
Scores of the Best) index), it was noted that genotypes G2, G9, G10, G14, G16, 
G17, G19, G20, and G22 exhibited both high yield and stability. Furthermore, 
genotypes G4, G62, G7, G9, G10, G15, G16, G17, G19, G20, G21, and G22, 
which demonstrated the highest WAASBY (Weighted Average of Absolute Scores 
of the Best Yield) values, were classified as stable and high-yielding. Ultimately, 
when the first principal components in the AMMI analysis or GGE Biplot account 
for a lower percentage of genotype-environment interaction, it is advisable to 
employ methodologies that incorporate all significant principal components to 
effectively identify superior genotypes.
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INTRODUCTION
Barley (Hordeum vulgare L.) is recognized as one of the 
most significant cereal crops, ranking fourth in terms 
of economic importance, following wheat, rice, and 
corn (Ferreira et al., 2016). Globally, the area allocated 
for barley cultivation encompasses 47.6 million 
hectares, resulting in a production volume of 156.8 
million tons. In Iran, the area under barley cultivation 
is approximately 1.65 million hectares, yielding an 
output of 3 million tons (FAO, 2022). Although barley 
is characterized by its wide adaptability, it is often 
associated with a lower economic value. Nevertheless, 
it presents a viable alternative to wheat in arid regions 
where rainfall is insufficient for wheat production (Zali 
and Barati, 2020).

The rate of breeding processes for quantitative 
traits in agricultural plants is significantly influenced 
by genotype×environment interaction effects. The 
more pronounced these effects are, the more difficult 
it becomes to select genotypes based solely on 
phenotypic characteristics. Genotype×environment 
interaction (GEI) effects are particularly critical 
for grain yield, which is recognized as a complex 
trait (Sharifi et al., 2021). The yield of barley, for 
instance, is affected by the differential responses 
of barley genotypes across various environments, 
which can be attributed to these interaction effects. 
The interaction between genotype and environment 
is a vital consideration in the development and 
dissemination of improved crop cultivars and lines 
(Farshadfar et al., 2012). Furthermore, this interaction 
presents a significant challenge in the selection of 
appropriate genotypes for specific traits. GEI effects 
can manifest in two forms: crossed, which arises from 
the incomplete correlation between traits in paired 
environments, and non-crossed, which results from the 
heterogeneity of genetic variance. Both forms can be 
assessed using Mixed Models (MM) (Yang, 2002), as 
direct testing is not feasible due to their lack of a Chi-
square distribution. The application of mixed models 
facilitates the analysis of unbalanced data and data 
pertaining to different temporal stages of an organism, 
as well as the estimation of variance and covariance 
components (Yang, 2010). A method that has been 
introduced for the analysis of multi-environment 
data is the Restricted Maximum Likelihood (REML) 
approach, which is grounded in Henderson’s theoretical 
framework (Henderson, 1984). This method addresses 
the limitations associated with variance analysis 
using the Least Squares (LS) method, particularly for 
unbalanced and heterogeneous data (Holland, 2006). 
The REML method offers several advantages over 

classical methods for estimating variance components, 
including the direct estimation of genetic correlations 
and their standard errors with enhanced accuracy, 
flexibility in linear models for analyzing both balanced 
and unbalanced data such as multi-environment 
experiments, high efficiency for experimental designs 
such as alpha lattice and augmented designs with a 
single replication, and a reduction in the occurrence 
of negative estimates of genetic parameters that may 
arise from inadequate experimental design in classical 
methodologies (Searle  et al., 1992; Liu  et al., 1997; 
Holland, 2006).

Numerous methodologies have been proposed 
for the analysis of yield stability, encompassing 
both parametric (univariate and multivariate) and 
non-parametric approaches. Notable examples of 
multivariate methods include the Additive Main 
Effect and Multiplicative Interactions (AMMI) 
method (Gauch and Zobel, 1997) and the GGE Biplot 
(Genotype+Genotype×Environment) method (Yan 
et al., 2000). Furthermore, the Best Linear Unbiased 
Predictors (BLUP) method has been recommended for 
the evaluation of data derived from multi-environment 
trials (MET). The BLUP method is particularly 
effective in estimating the average of random effects 
with high precision, especially within mixed models 
such as linear mixed-effects models (LMM) (Olivoto 
et al., 2019a).

The AMMI analysis is a widely utilized method 
for interpreting genotype×environment interaction 
effects in multi-environment uniform experiments. 
This analytical approach facilitates the graphical 
representation of interactions, thereby rendering it 
more effective than traditional variance analysis (Van 
Eeuwijk et al., 2016). It has been extensively applied 
in research focused on evaluating GEI effects and yield 
stability across various crops (Rahayu, 2020; Hasani 
et al., 2021; Namdari et al., 2022). Furthermore, the 
best linear unbiased predictions (BLUP) method is 
employed to estimate the average yield of genotypes 
in multi-environment experiments (Nardino et al., 
2016; Olivoto et al., 2017). The AMMI analysis 
captures the majority of GEI effects on the first axis of 
the principal component interaction effects (IPCA1), 
while the primary source of random error is linked to 
the final IPCAs (Mofidian and Moghaddam, 2013). 
To mitigate the limitations associated with the AMMI 
method, researchers have proposed the integration 
of AMMI and BLUP methodologies (Olivoto et al., 
2019a). This integration introduces an index known 
as the stability index of the weighted average of 
absolute scores of the best unbiased (WAASB) linear 
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predictions (Olivoto et al., 2019a). The calculation of 
WAASB involves conducting the AMMI analysis on 
the best linear unbiased predictions rather than on the 
original multi-environment test data. From a practical 
perspective, BLUP and AMMI can be regarded as two 
distinct methodologies that pursue the same objective: 
differentiating the patterns of GEI (Olivoto et al., 
2019a). The WAASB index offers several advantages 
over the AMMI decomposition indices. It is based on 
absolute deviations rather than the squared deviations 
employed in AMMI analysis, making it less sensitive 
to outlier data. Additionally, the calculation of WAASB 
incorporates all principal components (Olivoto et al., 
2019a). In contemporary agricultural crop breeding, 
researchers strive to combine stability with yield 
to develop genotypes that are both stable and high-
yielding. They evaluate both yield and stability traits 
concurrently to select high-yielding genotypes while 
minimizing GEI effects. Following the computation 
of the WAASB index, another index, referred to as 
weighted average of absolute scores of the best yield 
(WAASBY), can be derived, which simultaneously 
considers grain yield and genotype stability. 
Depending on the objectives of the breeding program, 
breeders may assign varying weights to the WAASB 
stability index and yield (Olivoto et al., 2019a). 
The introduction and application of the WAASB 
index for assessing seed yield stability in genotypes 
across diverse environments have recently garnered 
significant interest among researchers (Hossain et al., 
2023; Behera et al., 2023; Pour-Aboughadareh et al., 
2024). Consequently, numerous studies have been 
conducted utilizing this index to investigate the effects 
of GEI (Karimizadeh et al., 2021; Sharifi et al., 2021; 
Mousavi et al., 2023).

The objective of this research was to identify 
high-yielding barley genotypes that are adapted to 
the climatic conditions of the cold dryland regions 
of Iran. This was achieved through the application 
of the AMMI method, as well as a combination of 
the AMMI and BLUP methods, utilizing the WAASB 
and WAASBY indices, along with other BLUP-based 
indices. Additionally, the study aimed to evaluate 
the efficacy of these two models in enhancing the 
understanding of genotype×environment interaction 
effects.

MATERIALS AND METHODS
In this study, twenty-five advanced and promising 
cultivars and lines of barley, selected from advanced 
common yield comparison experiments, were 
evaluated alongside the check cultivars Ansar, Abider, 

and Sararoud 1 (Table 1). The research was conducted 
under rainfed conditions utilizing a completely 
randomized block design with four replications 
across various rainfed research stations located in the 
cold and temperate regions of Maragheh, Kurdistan 
(Qamlo), Zanjan (Qidar), Ardabil, Kermanshah 
(Sararood), Shirvan, and Hamadan over a three-year 
period from 2017 to 2020 (Table 2). The specifications 
and meteorological data for the testing stations 
are presented in Tables 3 and 4, respectively. Field 
preparation operations were executed at the study 
sites to the extent feasible. The fields were plowed 
to a depth of 20-25 cm during the autumn of the 
preceding year. In the spring, prior to the flowering 
of weeds, a cultivator was employed, and a disk was 
utilized before planting in the fall. The requirement 
for fertilizer elements was determined based on soil 
tests conducted at each station. The experimental plots 
consisted of six lines, each measuring six meters in 
length, with a spacing of 20 cm between lines. The 
seeding rate was established at 400 seeds per square 
meter, in accordance with the weight of 1,000 seeds 
for the respective genotypes. Herbicides were applied 
to manage broadleaf weed populations. The remaining 
agricultural practices across the different stations were 
largely consistent.

After determining the seed yield of each genotype, a 
simple variance analysis was conducted for each year 
and location. The homogeneity of the error variance 
was assessed using Bartlett’s test and Hartley’s F-max 
test. Subsequently, a combined variance analysis was 
performed to examine the main effects of genotype 
and environment, as well as the interaction effect 
of genotype×environment. The F-test for sources 
of variation was executed based on mathematical 
expectations, assuming the randomness of years and 
locations, along with the constancy of genotypes. To 
evaluate the stability of the genotypes, the Additive 
Main effects and Multiplicative Interaction (AMMI) 
method was employed. During the AMMI variance 
analysis, the values of the principal components were 
calculated for each genotype and environment, and the 
corresponding biplots were generated (Rodriguez et 
al., 2007). To quantify the stability of the genotypes, 
singular value decomposition (SVD) was applied 
to the matrix of the best unbiased predictions of 
genotype×environment interactions, utilizing a linear 
mixed effects model. Variance components were 
estimated using REML. The significance of random 
effects was assessed through the likelihood ratio 
test (LRT). Variance components were identified 
with the aid of a scree plot. Ultimately, in pursuit 
of simultaneously selecting a stable and productive 
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genotype, the WAASBi and WAASBYi stability metrics 
were employed to quantify stability, as described by 
the following equations (Olivoto et al., 2019a).

In the context of the presented equations, WAASBi 
represents the weighted average of the absolute scores 
for the i-th genotype, while IPCAik denotes the score of 

Code Environment Code Environment Code Environment Code Environment 
Mara1 Maragheh-1st year Shir2 Shirvan-2nd year Sara1 Sararood-1st year Hame3 Hamedan -3rd year 
Mara2 Maragheh-2nd year Shir3 Shirvan-3rd year Sara2 Sararood -2nd year Arde1 Ardebil-1st year 
Qam1 Qamlu-1st year Zan1 Zanjan-1st year Sara3 Sararood -3rd year Arde2 Ardebil -2nd year 
Qam2 Qamlu-2nd year Zan2 Zanjan-2nd year Hame1 Hamedan-1nd year Arde3 Ardebil -3rd year 
Qam3 Qamlu-3rd year Zan3 Zanjan-3rd year Hame2 Hamedan -2nd year   

Table 1. Pedigree of promising barley varieties and lines in the studied environments.

DARI: Dryland Agricultural Research Institute.

Table 2. Environments examined in the nationwide uniform test.

(1)

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖 =
∑ |𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑖𝑖𝑖𝑖 × 𝐸𝐸𝐼𝐼𝑖𝑖|𝑃𝑃
𝑖𝑖=1

∑ 𝐸𝐸𝐼𝐼𝑖𝑖𝑃𝑃
𝑖𝑖=1

 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖 =
{𝑊𝑊𝑌𝑌 × [( 𝐺𝐺𝑊𝑊𝑖𝑖

𝐺𝐺𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚
) × 100]} + {𝑊𝑊𝑠𝑠 × (100 − 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑚𝑚𝑖𝑖𝑚𝑚
)}

𝑊𝑊𝑌𝑌 +𝑊𝑊𝑆𝑆
 

Code Genotype pedigree Genotype origin 
G1 Ansar DARI 
G2 Abider DARI 
G3 Sararood-1 DARI 
G4 B-c-74-2/Abidar  DARI 
G5 VA92-44-275//Tokak/Demir-2                  DARI 
G6 BAŞGÜL     DARI 
G7 EFES30     DARI 
G8 GkOmega/CWB117-5-9-5//Sararood DARI 

G9 
Roho/Masurka//ICB- 
103020/3/Kc/MullersHeydla//Sls/4/Sararood/5/GaraArpa/6/1142/Gumhuriyet//Radical          
IRB-008-54-0MH-0MH-0MH-0MH-2MH 

DARI 

G10 Obruk-86/3/Alpha//Sul/Nacta/4/Sadik-05/5/Icb-100059                  DARI 
G11 Reihan-03//Tokak/Demir-2                   DARI 
G12 MB-90-3(Beecher/1-BC-80411//1-BC-80593) DARI 
G13 Beecher-Sel//Gloria"S"/Copal"S"/4/Deir Alla 106//Hem/Bc/3/Rihane"S"     DARI 
G14 Unknown DARI 
G15 GkOmega/4/Arr/Esp//Alger/Ceres362-1-1/3/ICB-100175 DARI 
G16 ChiCm/An57//Albert/3/ICB-102379/4/GkOmega DARI 
G17 AYDANHANIM DARI 
G18 ZEYNELAGA DARI 
G19 G.B.71530 DARI 
G20 G.B.71530 DARI 
G21 G.B.71538 DARI 
G22 G.B.71557 DARI 
G23 G.B.72566 DARI 
G24 G.B.72581 DARI 
G25 G.B.72650 DARI 
G26 G.B.72655 DARI 
G27 G.B.72665 DARI 
G28 G.B.72680 DARI 
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the i-th genotype along the k-th axis of the Interaction 
Principal Component Analysis (IPCA). Additionally, 
EPk signifies the proportion of variance accounted for 
by the k-th IPCA. The genotype exhibiting the lowest 
WAASB value is deemed stable, as indicated by Yan et 
al. (2000). The simultaneous selection for both mean 
yield and stability is facilitated through the WAASBY 
index, which allocates weights to mean yield (Y) and 
the stability index (WAASB). Specifically, WAASBYi 
is defined as the weighted average of WAASB 
and grain yield (GY) for the i-th genotype. Here, 
WY represents the weight assigned to the response 
variable, which, in this instance, is grain yield; GYi 
refers to the average seed yield of the genotype across 
all environments; GYmax indicates the highest average 
grain yield recorded; WS is the weight attributed to 
the stability index (in this case, the WAASB index); 
WAASBi is the weighted average of the absolute 
scores for the i-th genotype; and WAASBmin denotes 
the minimum WAASB value observed among the 
genotypes. In addition to the WAASB and WAASBY 
indices, statistical measures derived from the BLUP/
REML mixed model, including the harmonic mean of 
genotypic values (HMGV), the relative performance of 
genotypic values (RPGV), and the harmonic mean of 
relative performance of genotypic values (HMRPGV), 

were also employed (Resende, 2004).

In the equations presented, E denotes the number of 
environments, while GVij represents the genotypic value 
of the i-th genotype in the j-th environment, expressed 
as the average ratio across these environments. 
Additionally, μi signifies the average seed yield in the 
j-th environment. The harmonic mean of the relative 
performance of genotypic values is employed for 
the simultaneous selection of yield, stability, and 
compatibility among genotypes. In all methodologies 
utilized, the highest value indicates the most stable 
genotype. All statistical analyses were conducted using 
the Metan (Multi-Environment Trial Analysis) package 
(Olivoto, 2019) within R Studio software.

Station Longitude  
(degrees east) 

latitude  
(degree north) 

Height above sea level 
(meters) Soil texture 

Maragheh 46 ', 15 ° 37 ', 15 ° 1720 Clay-Loam 
Qamlu 47 ', 00 ° 35 ', 20 ° 1500 Clay-Loam 
Zanjan 48 ', 49 ° 36 ', 58 ° 1875 Loam-Silt 
Ardabil 48 ', 17 ° 38 ', 15 ° 1342 Clay-Loam 
Sararod 57 ', 55 ° 37 ', 23 ° 1351 Silt-Clay-Loam 
Hamedan 48 ', 32 ° 34 ', 53 ° 1733 Sand-Loam 
Shirvan 58 ', 07 ° 37 ', 19 ° 1086 Clay-Loam 

Cropping years Variables Ardebil Maragheh Sararod Shirvan Zanjan Qamlu Hamedan 

2017-2018 Rain 226.4 326.8 518.8 252.7 426.3 396.3 389.2 
Temperature 8.06 5.2 11.7 9.3 7.5 6.9 8.4 

2018-2019 Rain 274.2 494.6 782.5 337.8 430 444.5 506.8 
Temperature 8.1 5.6 11.1 9.8 7.6 7.4 8.4 

2019-2020 Rain 255.4 423.3 521.2 141.3 390 339.5 307.9 
Temperature 8.3 5.1 11 9.1 7.4 7.1 8.2 

Long-term Rain 251.9 356.1 413.9 247.1 349.2 339.4 285.3 
Temperature 7.5 5.3 11.4 10 7.5 6.5 8.5 

Table 3. Geographical characteristics and soil types of the investigated agricultural research stations.

Table 4. Comparative analysis of the average annual rainfall and temperature recorded at the agricultural research stations 
examined in this study over the three-year period under investigation.

(2)

(3)

(4)

HMGVi=
E

∑ ( 1
CVij

)E
j=1

 

RPGVi=
1
E(

∑ GVij
E
j=1

μi
) 

HMRPGVi=(
E

∑ 1
RPGVi

E
j=1

) 
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RESULTS AND DISCUSSION
The uniformity of the variance of experimental errors 
was evaluated using Bartlett’s test and the F max Hartley 
test (Table 5). These statistical analyses were based on 
the variance of experimental errors calculated for yield 
data collected over multiple years and across different 
stations. The significant result obtained from Bartlett’s 
test, in conjunction with the non-significant result 
from the F max Hartley test, suggests that the within-
treatment variances are consistent. It is noteworthy that 
when assessing the uniformity of error variances, it is 
prudent to employ multiple testing methods. If any one 
of these methods yields a non-significant result, the 
uniformity of the experimental error variances may be 
accepted (Valizadeh and Moghadam, 2010).

Variance analysis was performed on data collected 
from seven locations over a three-year period (Table 
6). Data from Shirvan in the first year and Maragheh 
in the third year were excluded due to distortion. 
The analysis, including the F-test, was based on the 
mean square and assumed randomness concerning 

both year and location, as well as the constancy of 
genotypes. The interaction effects of year×location and 
genotype×year×location were found to be significant 
at p<0.01, while the year effect was significant at 
p<0.05, and the effects of location and genotype were 
significant at p<0.1. These results indicate variability in 
environmental conditions across the different regions 
and years (Table 6). The significant interaction effect 
of year×location suggests a substantial influence on the 
triple interaction effect. The significance of the triple 
interaction of genotype×location×year (environment) 
implies that genotypes exhibit varying responses 
across different environments, thereby allowing for 
the assessment of grain yield stability. Variations in 
genotype responses are typically attributed to differences 
in gene expression or their distinct manifestations in 
varying environmental contexts (Jafari and Farshadfar, 
2018). The main effect of the environment (comprising 
both main and interaction effects) and the interaction 
effect of genotype×environment (encompassing both 
double and triple interaction effects) accounted for the 
largest proportions of the total variance observed in the 

Croping season 
Mean of squares 

Ardebil Maragheh Sararod Zanjan Hamedan Qamlu Shirvan 
2017-2018 0.1206 0.1725 0.1706 0.1478 0.1796 0.1801 - 
2018-2019 0.1761 0.1129 0.1377 0.1043 0.2006 0.1380 0.130 
2019-2020 0.1222 - 0.1119 0.1404 0.1760 0.17 0.1459 
Fmax Hartley=1.92ns 
Bartlets test=141.4** 

Table 5. The variance of experimental errors across various distinct locations during three crop seasons, along with the results 
of the Fmax Hartley and Bartlett’s tests utilized to assess the uniformity of variances.

Table 6. The results of a combined variance analysis of the yield of promising barley lines across the studied locations over 
a three-year period in a cold climate.

** and *: Significant at the probability level of 1 and 5%, respectively.

***, ** and *: Significant at the probability level of 1, 5 and 10%, respectively.

Source df Sum of square Mean of square Percentage of sum of square 
Year 2 370.03 185.01** 22.50 
Location 6 466.61 77.77* 28.38 
Year×location 10 314.1 31.41*** 19.10 
Block (year×location) 57 70.3 1.23 4.28 
Genotype 27 15.32 0.57* 0.93 
Year×genotype 54 19.87 0.37 1.21 
Location×genotype 162 56.28 0.35 3.42 
Year×location×genotype 270 101.93 0.38*** 6.20 
Error 588 229.79 0.149 13.98 
Total 2127 1644.24   
Coefficient of variation (%) 13.2 
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experiments, with contributions of 69.98% and 10.83%, 
respectively (Table 6). Generally, a high impact of the 
environment coupled with a low interaction effect 
of genotype×environment suggests that the studied 
genotypes exhibit good stability (Ehyaei et al., 2022). 
Some researchers have noted that the environment 
contributes the largest sum of squares, indicating the 
presence of diverse testing environments (Kanouni et 
al., 2007; Ehyaei et al., 2022). Despite the significance 
of the main effect of genotype, the relatively small 
contribution of genotype to the total sum of squares 
(approximately 1%) can be attributed to the effective 
selection of these genotypes in preliminary breeding 
program experiments (Golkari et al., 2021). Among 
the genotypes studied, G6, G7, G15, G21, and G22 
exhibited the highest grain yields, while G12, G25, and 
G28 recorded the lowest yields. Variations in climate, 
soil conditions, and crop management practices across 
different years and experimental locations during the 
growth period may explain the observed differences 
between environments. Furthermore, the significance 
of double and triple interaction effects, along with 
genetic diversity among genotypes and their responses 
to geographical and climatic factors, must be taken 
into account. Consequently, identifying the genotype 

with the highest yield alone may be insufficient. A 
stability analysis that considers both high grain yield 
and minimal yield fluctuation across different years is 
essential for identifying genotypes that are well-suited 
for the region. To facilitate this, stability analysis 
was conducted using AMMI methods and best linear 
unbiased predictions to identify stable genotypes with 
high grain yield.

AMMI analysis
The AMMI analysis presented in Table 7 indicates that 
the first eight principal components are statistically 
significant, collectively accounting for nearly 85% 
of the variation in the GEI effect. Notably, the first 
and second components exert the most substantial 
influence, contributing 37.6% to the expression of this 
interaction effect, while the subsequent components 
follow in terms of their relative importance. The 
variance attributed to each component is essential for 
effectively differentiating genotypes and validating 
the observed relationships. In principal components 
analysis, the objective is to utilize a linear combination 
of variables to elucidate the majority of their variance. 
The first component captures the highest amount of 
variance, whereas the second component addresses 
the largest portion of the residual variance that 

Table 7. AMMI analysis for the grain yield of promising rainfed barley varieties in cold climate conditions.

** and *: Significant at the level of 1 and 5%, respectively.

Source df Sum of 
square 

Mean of 
square 

Percentage of  
sum of square 

Acumulative percentage  
of sum of square 

ENV 18 1152.62 64.03**   
REP(ENV) 57 69.84 1.22   
GEN 27 12.48 0.46**   
GEN: ENV 486 159.63 0.328**   
PC1 44 30.72 0.698** 19.2 19.2 
PC2 42 29.37 0.699** 18.4 37.6 
PC3 40 22.06 0.551** 13.8 51.5 
PC4 38 14.6 0.384** 9.1 60.6 
PC5 36 12.67 0.352** 7.9 68.6 
PC6 34 10.46 0.308** 6.6 75.1 
PC7 32 9.28 0.29** 5.8 80.9 
PC8 30 7.43 0.248** 4.7 85.6 
PC9 28 5.11 0.182 3.2 88.8 
PC10 26 3.96 0.152 2.5 91.3 
PC11 24 3.35 0.149 2.1 93.4 
PC12 22 3.14 0.143 2 95.3 
PC13 20 2.25 0.112 1.4 96.7 
PC14 18 2.12 0.118 1.3 98.1 
PC15 16 1.17 0.073 0.8 98.8 
PC16 14 1.11 0.079 0.7 99.5 
PC17 12 0.56 0.047 0.4 99.9 
PC18 10 0.23 0.023 0.1 100 
Residuals 1539 225.09 0.14   
Total 2127 1779.27 0.68   
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remains unexplained by the first component (Sharifi, 
2021; Karimizadeh et al., 2021). Additionally, other 
researchers have acknowledged the limited role of 
the two primary components in elucidating variations 
in the GEI effect (Aghaee Sarbezeh et al., 2012; 
Karimizadeh et al., 2020; Amini et al., 2023).

Genotypes exhibiting extreme values (both positive 
and negative) of the IPC1 demonstrate a significant 
interaction effect with their environment, whereas 
genotypes with values approaching zero exhibit a 
minimal interaction effect. Among the evaluated 
genotypes, G4, G5, G9, G11, G14, G15, G18, G19, G20, 
G21, and G26 were identified as having the lowest IPC1 
values. Notably, only G15 and G21 surpassed the mean 
total yield of 2.92 tons per hectare, thereby qualifying 
as stable genotypes with high general stability (Table 
8). Figure 1 illustrates the biplot of the first principal 
component of the interaction effect plotted against 
the average yield of AMMI1. In this biplot, the 
horizontal axis represents the cumulative main effects 
(average yields), while the vertical axis denotes the 
multiplicative interaction effects (the values of the 
first principal component of the interaction effect). 
The central vertical line of the biplot indicates the total 
average yield. Genotypes and locations positioned to 
the right of this line yield higher than the total average. 
The horizontal axis at the center of the biplot (IPCA1) 
signifies the absence of GEI effects; thus, the proximity 
of genotypes and environments to this horizontal line 
correlates with reduced interaction effects (Yan and 
Hunt, 2001). As previously noted, genotypes and 
environments exhibiting a pronounced interaction 
effect are characterized by substantial values (either 
positive or negative) for the first principal component 
of the interaction effect. Consequently, genotypes G3, 
G12, G13, G24, G25, and G28 were determined to be 
more unstable compared to their counterparts. It was 
also observed that the environments Mara1, Qam1, 
Sara1, Arde1, and Hame3 yielded above-average 
results; however, they did not exhibit a consistent 
trend in the first principal component of the interaction 
effect. Conversely, Arde2, Zan3, and Shir3 recorded the 
lowest IPC1 values, while Sara2 and Zan1 exhibited 
the highest IPC1 values (Figure 1).

Genotypes G4, G9, G10, G19, and G21 were 
identified as the most stable genotypes, as evidenced 
by their low values for the first and second interaction 
principal component axes (IPCA1 and IPCA2), and their 
positioning near the center of the AMMI2 biplot (Figure 
2). The AMMI2 biplot serves as a tool for evaluating 
the discriminatory capacity of various environments 
and for understanding the interrelationships 

among them. According to the biplot analysis, the 
environments Hame1, Sar2, and Arde1, characterized 
by long vectors, exhibited a high degree of separation 
and are thus deemed suitable for assessing the relative 
efficiency of genotypes and for distinguishing among 
them. These environments are particularly valuable for 
the selection of specific genotypes, especially when 
considering the categorization of target environments 
into mega-environments. In contrast, environments 
situated near the origin of the biplot demonstrate 
limited differentiation capability and provide minimal 

 

 

 

 

 

 

Figure 1. AMMI1 biplot for 28 barley genotypes across 18 
different environments.

Figure 2. Biplot of the AMMI2 analysis, which is utilized to 
identify superior genotypes and differentiate environments 
based on the first and second principal components.
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information regarding the genotypes. Consequently, 
these environments should not be employed as reference 
experimental settings (Karimizadeh et al., 2020). 
Furthermore, the biplot can facilitate the examination 
of correlations between environments. Hame1, Arde2, 

Zan2, and Hame3 exhibited a high correlation with 
one another, while Arde1, Sara1, and Mara2 displayed 
a similar pattern based on the vector lengths and the 
angles between them. Additionally, Qam1, Qam2, 
and Zan1 also demonstrated a strong correlation. 

Genotype Yield IPCA1 IPCA2 IPCA3 IPCA4 IPCA5 IPCA6 IPCA7 IPCA8 IPCA9 IPCA10 
G1 2.89 0.19 -0.13 -0.08 0.13 -0.09 -0.25 -0.22 0.43 0.03 0.13 
G2 2.91 0.15 -0.31 -0.05 -0.31 -0.03 -0.32 -0.16 -0.38 -0.18 -0.23 
G3 2.86 0.4 0.27 -0.49 0.11 0.16 0.43 -0.54 -0.13 -0.28 0.09 
G4 2.92 -0.04 0.06 -0.31 -0.05 0.19 0.07 0.06 0.32 -0.14 0.24 
G5 2.87 -0.03 -0.18 -0.01 0 -0.16 -0.53 -0.01 -0.42 -0.17 -0.19 
G6 3.07 -0.25 -0.26 -0.43 -0.33 0.61 0.05 0.05 0.04 -0.08 -0.24 
G7 3.01 0.2 -0.4 -0.12 0.022 0.17 -0.28 0.38 -0.12 0.14 0.19 
G8 2.87 0.19 -0.04 0.11 -0.03 0.09 0 -0.19 0.07 0.16 0.17 
G9 2.98 0.09 -0.08 0.16 0.027 -0.04 -0.05 0.39 -0.01 0.01 0.33 
G10 2.96 0.15 0 0.09 0.06 -0.21 -0.06 -0.26 0.18 -0.09 -0.2 
G11 2.9 -0.02 -0.35 -0.29 0.35 -0.1 -0.23 -0.05 0.04 -0.11 0.21 
G12 2.78 -0.86 0.03 0.18 -0.17 0.02 0.25 -0.31 -0.25 0.28 0.11 
G13 2.88 -0.41 -0.08 0.35 -0.1 -0.21 0.14 -0.03 0.32 -0.13 0.06 
G14 2.95 0.04 -0.21 0.107 0.53 -0.16 0.05 -0.18 0.17 0.03 -0.43 
G15 3.05 0.07 0.16 -0.61 -0.2 -0.16 0.08 0.14 0.32 -0.09 -0.13 
G16 2.95 -0.16 -0.04 -0.03 0.45 -0.26 -0.03 -0.11 -0.04 0.25 -0.17 
G17 2.99 0.17 0.26 -0.38 -0.75 -0.53 -0.02 0 -0.05 0.4 -0.04 
G18 2.9 -0.06 0.39 -0.07 0.34 -0.41 0.18 0.01 -0.31 -0.06 0.18 
G19 2.99 -0.01 0.02 -0.11 0.19 0.12 0.19 0.15 -0.09 0.45 -0.08 
G20 2.98 -0.04 0.21 -0.11 0.046 -0.09 0.1 0.17 -0.25 -0.07 0.24 
G21 3.02 -0.06 -0.06 -0.12 0.17 0.23 0.3 0.48 -0.18 -0.19 -0.18 
G22 3.01 -0.12 -0.33 0.15 0.13 0.059 0.12 0.12 -0.17 -0.6 0.09 
G23 2.85 0.36 -0.33 0.3 -0.07 0.43 -0.15 -0.24 0.08 0.38 0.16 
G24 2.86 0.46 1.14 0.36 0.1 0.37 -0.34 0.06 -0.06 0.01 -0.09 
G25 2.79 -0.95 0.44 0.11 -0.07 0.23 -0.37 -0.09 0.15 -0.16 0.01 
G26 2.84 0.03 0.12 0.15 0.047 -0.04 0.13 0.36 0.29 0.17 -0.34 
G27 2.85 0.19 -0.14 0.58 -0.3 -0.34 0.03 0.19 0.13 -0.35 0.01 
G28 2.83 0.31 -0.13 0.57 -0.24 0.15 0.52 -0.16 -0.13 -0.09 -0.08 
 
Arde1 3.69 -0.23 -0.88 -0.13 0.077 -0.38 0.52 -0.01 0.39 -0.07 0.09 
Arede2 3.16 0.21 0.29 0.4 -0.49 0.22 0.15 0.28 0.25 0.15 0.07 
Arde3 3.27 0.004 -0.02 -0.01 0.89 0.77 0.01 -0.1 0.29 0.01 -0.24 
Hame1 2.88 0.39 0.99 -0.69 -0.11 -0.23 0.24 -0.14 0.39 0.2 -0.09 
Hame2 2.77 -0.39 -0.02 -0.84 -0.26 0.51 0.27 0.28 -0.37 -0.31 0 
Hame3 3.74 0.14 0.09 0.1 0.43 0.43 -0.19 0.25 -0.34 0.24 0.61 
Mara1 4.17 -0.23 -0.05 -0.35 0.26 -0.59 -0.23 0.19 -0.34 0.09 -0.25 
Mara2 2.48 -0.12 -0.19 -0.04 -0.19 0.09 -0.18 -0.37 0.23 -0.9 0.06 
Qam1 3.98 -0.23 0.39 0.12 0.14 -0.11 -0.14 0.08 -0.38 -0.27 -0.03 
Qam2 2.03 -0.12 0.29 0.49 -0.09 -0.32 0.29 -0.31 0.02 -0.47 -0.3 
Qam3 2.48 -0.16 -0.02 0.09 -0.06 -0.11 -0.16 -0.14 0.08 0.14 -0.14 
Sara1 3.94 -0.26 -0.48 -0.27 -0.12 -0.09 -0.19 -0.26 0.06 0.35 -0.18 
Sara2 3.25 1.32 -0.44 -0.02 0.13 0.12 -0.1 0.33 -0.1 -0.2 -0.16 
Sara3 3.4 -0.11 -0.04 0.57 -0.21 0.21 0.31 0.2 -0.34 0.52 -0.34 
Shir2 2.17 0.13 -0.21 0.12 -0.46 0.24 0.08 -0.12 -0.02 -0.3 0.09 
Shir3 2.51 0.096 -0.17 -0.17 -0.33 0.13 -0.49 0.1 0.04 0.19 0.27 
Zan1 2.96 -0.52 0.21 0.29 0.22 -0.16 -0.25 0.74 0.42 -0.14 0.19 
Zan2 1.65 0.18 0.17 0.08 0.11 -0.01 -0.39 -0.24 -0.12 0.02 0.18 
Zan3 1.49 -0.08 0.08 0.24 0.08 0.07 -0.28 -0.41 -0.14 -0.11 0.18 

Table 8. First to tenth principal components for promising barley genotypes and investigated environments.
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Therefore, it can be inferred that these environments 
may be regarded as similar in future studies aimed at 
evaluating the yield stability of cultivars.

Best linear unbiased predictions
The Scree test was performed to ascertain the optimal 
number of components that could elucidate the GEI 
effect. The results indicated that the first ten principal 
components significantly contributed to the explanation 
of the interaction within the GEI matrix derived from 
BLUP (Figure 3). Specifically, the first and second 
principal components accounted for only 19.2% and 
18.4% of the variance, respectively. Therefore, relying 
solely on the first and second principal components 
for interpreting stability analysis results may lead to 
misleading conclusions. Given that a mixed model was 
utilized in the data analysis of this study, the likelihood 
ratio test was employed to evaluate the significance of 
the experimental factors. The findings revealed that 
both the genotype and GEI had a significant impact 
on grain yield (Table 9). The significance of the GEI 
effect suggests that the seed yield of a genotype may 
fluctuate across different environments. Consequently, 
the application of BLUP analysis is deemed appropriate 
for the examination of such data (Olivoto et al., 2019a). 
As a result, the best linear unbiased predictions were 
estimated, and stability analysis was conducted on 
these BLUPs using the AMMI method.

Various genetic parameters, including genotypic 
variance, genotype×environment variance, variance 
of residual values, and phenotypic variance, were 
estimated utilizing the restricted maximum likelihood 
method. The ratios of these parameters to the 
phenotypic variance were found to be 1.28%, 26.74%, 
and 71.99%, respectively (Table 9). The selection 

of genotypes, recommendations for genotypes, and 
the identification of optimal environments in plant 
breeding programs frequently depend on multi-
environment experiments. Consequently, accurate 
predictions are essential. In this study, the broad-sense 
heritability for seed yield was determined to be low, 
approximately 1.2%, primarily due to the significant 
influence of genotype×environment interaction in 
comparison to the effect of genotype alone. The 
coefficient of determination for genotype×environment 
interaction and the mean genotypic heritability rate 
were calculated to be 0.26 and 0.356%, respectively. 
The accuracy of genotype selection and the correlation 
between genotypic values across environments were 
measured at 0.5968 and 0.267, respectively. The 
genotypic coefficient of variation, residual coefficient 
of variation, and the ratio of the two were recorded 
as 1.766%, 13.206%, and 0.1337%, respectively. The 
effect of GEI on genotype effect was quantified at 20.75. 
To enhance the accuracy of predictions, breeders may 
consider employing statistical models with superior 
predictive capabilities, such as the best linear unbiased 
predictors. Furthermore, stability analysis utilizing the 
AMMI method can be conducted on these predictions 
(Olivoto et al., 2019a).

The predicted average seed yields obtained through 
the BLUP method are illustrated in Figure 4. The 
genotypes G6, G15, G21, G7, and G22 exhibited the 
highest predicted yields, surpassing the overall mean. 
Conversely, the genotypes G12, G25, G28, G26, and 
G27 demonstrated the lowest yields, which were below 
the mean yield of all genotypes.

To evaluate the stability of the genotypes, a biplot 
diagram was employed, illustrating the relationship 

 

 

 

Figure 3. Eigenvalues of the Best Linear Unbiased Prediction for Genotype-Environment Interaction (BLUP_GEI) matrix 
concerning grain yield.
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between the first principal component of the 
environment and the nominal yield. This diagram, 
commonly referred to as a polygonal biplot or “which-
won-where,” displays the score of the first principal 
component of the environment on the X-axis and the 

nominal yield of the genotypes on the Y-axis (see 
Figure 5). Each genotype is represented by a line 
described by the equation y=a+bx, where x denotes the 
axis score of the IPCA1, a represents the mean yield 
of each genotype, and b signifies the IPCA1 for each 

 

 

 

Table 9. Evaluation significance of factors using the Likelihood Ratio Test (LRT) denoted by χ², as well as the estimation of 
variance components through Restricted Maximum Likelihood (REML) for seed yield.

Values in parentheses are percentages of observed variance relative to phenotypic variance.

Figure 4. Predicted seed yield, as determined by the best linear unbiased prediction (BLUP), for 28 barley genotypes. The blue 
circles denote genotypes with BLUP values above the mean, while the red circles indicate those with BLUP values below the 
mean. The horizontal error bars represent the 95% confidence interval of the predictions, calculated using a two-tailed t-test.

Statistics 
Likelihood statistics 

Genotype Genotype×environment 
Chi square X2 2.83 170.44 
p-Value 9.2×10-2 5.92×10-39 
 
Parameters estimated by the restricted likelihood method Variance components, estimates (percent) 
Genotypic variance σ2g 0.00266 (1.28%) 
Genotype×environment variance σ2i 0.0552 (26.74%) 
Variance of residual values σ2e 0.1486 (71.99%) 
Phenotypic variance σ2P 0.2064 
Broad-sence heritability h2g 0.012 
coefficient of explanation of 
genotype×environment interaction effect R2gei 0.26 

Mean genotypic heritability h2mg 0.356 
Genotype selection accuracy and  As 0.5968 
Correlation between genotypic values across 
environments rge 0.267 

Genotypic coefficient of variation  CVg (%) 1.766 
Residual coefficient of variation CVe (%) 13.206 
Ratio of genotypic coefficient of variation to 
residual coefficient of variation 

CVg/CVe 
ratio 0.1337 

Ratio of genotype×environment interaction to 
genotype effect σ2i/σ2g ratio 20.75 
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genotype (Olivoto et al., 2019b). The equations of these 
lines suggest that, with the exception of genotypes G6, 
G21, G7, G15, G24, and G27, the remaining genotypes 
exhibited a minimal contribution to the GEI effect, as 
indicated by their low (b) coefficients (slopes of the 
lines), thereby rendering them more stable. Conversely, 
the aforementioned genotypes (G6, G21, G7, G15, G24, 
and G27) demonstrated higher principal component 
scores, indicating variable yields across different 
environments, and were thus classified as unstable, 
particularly in Hamedan during the second year. 
According to this diagram, which is derived from the 
first axis of the principal component analysis, among 
the high-yielding genotypes identified through the 
BLUP method (Figure 5), genotypes G6, G21, G7, and 
G15 were recognized as unstable due to the steepness 
of their corresponding lines. In contrast, the remaining 
genotypes, including G22, G17, G19, G9, G20, G16, 
G14, and G10, were deemed more stable. It is important 
to note that the interpretation of this diagram should be 
approached with caution, as it is based solely on the first 
principal component, which accounts for only 19.2% 
of the variability in the GEI. Consequently, additional 
analyses incorporating other principal components may 
provide more robust insights.

To achieve a more precise evaluation of stability, a 
third-type biplot was employed. In this biplot, grain 
yield is represented on the horizontal axis, while the 
weighted average of the absolute scores is depicted 
on the vertical axis (Figure 6). The genotypes and 
environments are categorized into four quadrants 
based on their yield and stability. Quadrant I includes 

genotypes G24, G12, G28, G27, G3, and G25, along 
with environments Hame1, Hame2, and Qam2. 
These genotypes and environments are classified as 
unstable due to their significant contribution to the 
genotype-environment interaction effect, resulting in 
yields that are below the overall average. They are 
specifically suited for these environments (Olivoto 
et al., 2019b). Quadrant II comprises genotypes G6, 
G15, G21, and G7, which exhibit yields above the 
mean but are considered unstable due to their elevated 
values on the WAASB index. The environments in 

 

 

 

 

 

 

Figure 5. Yield evaluation diagram for 28 barley genotypes across 19 environments, illustrating the relationship between 
nominal seed yield and the scores of the first axis of the principal environmental component of interaction (IPCA1).

Figure 6. Biplot of yield versus weighted mean absolute 
scores for the best linear unbiased predictions of the 
genotypes×environment interaction effect (WAASB).
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this quadrant, including Arde1, Sara1, Sara2, Zan1, 
and Mara1, warrant special attention due to their high 
yield and effective detection capability. In quadrant 
III, genotypes G11, G1, G5, G8, G26, and G18, along 
with environments Shir2, Shir3, Zan2, Zan3, Mara2, 
and Qam3, are identified as stable, characterized by 
low WAASB values and yields that are below average, 
indicating limited detection capability and suboptimal 
yield. Finally, quadrant IV consists of genotypes G19, 
G20, G22, G10, G9, G16, G2, G14, and G17, which 
are recognized for their high yield and stability, as 
evidenced by their low WAASB values and superior 
yield performance. These genotypes exhibit greater 
stability compared to others (Donoso-Nanculao et 
al., 2016; Mohammadi et al., 2016; Dos Santos et al., 
2019; De Abreu et al., 2019).

Ranking of genotypes based on stability index 
weighting and grain yield dependent variable
In Figure 7, genotypes were identified utilizing the 
WAASBY values, which serve as a simultaneous 
selection criterion that incorporates both mean seed 
yield and the WAASB stability index. The calculation 
of WAASBY values involved assigning different 
weights to grain yield and the WAASB index. The graph 
illustrates that both indices hold equal significance in 
the selection of genotypes, as an identical weighting was 
applied to both the grain yield index and the WAASB 
stability index. Utilizing a 50:50 ratio for weighting, 
the genotypes exhibiting the highest WAASBY values, 
and thus deemed stable with high grain yield, include 
G19, G22, G20, G9, G10, G4, G7, G16, G17, G6, 
G15, G21, G14, G8, G5, G1, and G2. These genotypes 
are distributed across various quadrants of the graph, 
reflecting their stability and performance in terms of 
grain yield. It is crucial to conduct a comprehensive 
evaluation of genotype stability by comparing the two 
diagrams, while considering the weights assigned to the 
stability indices and the mean yield. Some genotypes 
that exhibit low scores in the first and second IPCA 
may yield misleading conclusions if selected or 
excluded based solely on the first and second principal 
components. In such instances, the WAASB index 
derived from the BLUP matrix may prove beneficial. 
However, caution is warranted in the interpretation 
of results, as only the simple component of GEI is 
observable in the first principal components, while 
the complex aspects of GEI may have been omitted 
in these biplots. In scenarios where the contribution 
of these components to the GEI is minimal, enhanced 
identification of high-yielding genotypes with 
extended stability can be achieved through the biplot 
of seed yield versus the weighted average of absolute 

scores (Figure 6) or the WAASBY diagram (Figure 7).

In Figure 8, varying weights are assigned to two 
dependent variable indices: grain yield and the WAASB 
stability index. The chart presents rankings based 
solely on the WAASB stability index in the leftmost 
column, where a weight of 100% is allocated to the 
WAASB stability index and a weight of 0% to the grain 
yield variable on the X-axis. Progressing from left to 
right in each subsequent column, the weight assigned 
to the grain yield variable is incrementally increased 
by 5%, while the weight of the WAASB stability index 
is correspondingly decreased by 5%. The ranking in 
the rightmost column is exclusively based on grain 
yield, which receives a weight of 100%. The results of 
the ranking with a 50:50 weight ratio are illustrated in 
Figure 7, where both the WAASB stability index and 
grain yield are assigned equal weight. In the leftmost 
column, genotypes G20, G19, G4, G22, and G9 
exhibited the highest stability, whereas G24, G6, G12, 
and G15 demonstrated the lowest stability. However, 
it is crucial to acknowledge that this ranking may lack 
reliability, as it does not account for the seed yield of 
the genotypes. In the rightmost column, where the 
ranking is determined solely by yield, irrespective of 
genotype stability, genotypes G6, G15, G7, G21, and 
G22 achieved the highest yields, while G12, G25, and 
G28 recorded the lowest yields. These findings are 
consistent with those presented in Figure 6. Genotypes 
are categorized by color to facilitate the identification 
of genotypic groups exhibiting similar stability and 

 

 

 

Figure 7. Estimated values of the weighted average of 
the Weighted Average of Agricultural Stability and Mean 
Yield (WAASBY) for 28 barley genotypes, utilizing an equal 
weighting of 50% for both yield and stability.
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yield characteristics. Specifically, genotypes G3, G28, 
G27, G25, G24, G23, and G12 (indicated in blue) 
are characterized as low-yielding but unstable, while 
G7, G6, G21, G17, and G15 (indicated in black) are 
classified as high-yielding but unstable. Genotypes 
G8, G5, G26, G2, G18, G14, G13, G11, and G1 
(indicated in green) are identified as stable yet low-
yielding. Finally, genotypes G9, G4, G22, G20, G19, 
G16, and G10 (indicated in red) are recognized as high-
yielding and stable, and as depicted in Figure 8, they 
rank among the top selections based on both stability 
and yield, with equal weighting assigned to these two 
indicators.

Ranking based on BLUP based indicators
The application of a mixed model for the concurrent 
selection of yield and stability incorporates genotypic 
values, which enhances the accuracy of identifying 
optimal genotypes (Resende, 2004). In this context, 
BLUP model-based statistics, including HMGV, 
RPGV, and HMRPGV, were employed to discern 
superior genotypes with respect to yield and stability 
(Kolumbari and Filho, 2013). The analysis revealed 
that genotypes G6, G15, G21, G20, G22, G17, G7, 
G9, and G19 exhibited the highest numerical values, 
signifying their superiority in both stability and yield. 
In contrast, genotypes G12, G26, G25, G27, and G28 
recorded the lowest values for HMGV, RPGV, and 
HMRPGV, categorizing them among the least effective 
in terms of grain yield and stability (Table 10.)

CONCLUSION
Based on the findings from the combined variance 
analysis, which indicated significant effects attributable 

to genotype, location, year, and the interaction effects 
of year×location and genotype×year×location, a 
stability analysis was performed utilizing AMMI and 
mixed model methodologies. The AMMI analysis 
revealed that the first and second principal components 
accounted for the most substantial contribution 
(37.6%) to the GEI effect, with subsequent components 
following in relative importance. Consequently, the 
genotypes G19, G11, G26, G5, G4, G14, G20, G18, 
G21, G15, and G9 exhibited the lowest values for the 
first principal component. Among these, only G15 and 
G21 demonstrated yields exceeding the mean yield, 
thereby categorizing them as stable genotypes with high 
general adaptability. In addition to the AMMI analysis, 
a mixed linear model was employed to analyze the 
trial data, and the likelihood ratio test was utilized to 
evaluate the significance of the experimental factors. 
The significance of the GEI effect underscored the 
variability in yield among genotypes across different 
environments. As a result, the BLUP were estimated, 
and stability analysis was conducted using the AMMI 
method. The evaluations indicated that the highest 
yields were recorded for genotypes G6, G15, G21, G7, 
and G22, while the lowest yields were associated with 
genotypes G12, G25, G28, G26, and G27. Based on 
the indices derived from BLUP, genotypes G6, G15, 
G21, G20, G22, G17, G7, G9, and G19 were identified 
as superior in terms of grain stability and yield relative 
to other genotypes. Furthermore, stability analysis 
employing a third-type biplot (yield vs. WAASB index) 
revealed that genotypes G19, G20, G22, G10, G9, 
G16, G2, G14, and G17 exhibited both high yield and 
stability. Given that the first two principal components 
contributed relatively low values to the GEI effect 
(19.2 and 18.4, respectively), the WAASBY genotypic 
stability index was utilized to assess genotype 
stability. This approach provided reliable estimates 
and facilitated the simultaneous interpretation of 
yield and stability within a two-dimensional graphical 
representation. The results indicated that genotypes 
G19, G22, G20, G9, G10, G4, G7, G16, G17, G6, 
G15, and G21, which exhibited the highest WAASBY 
values, were characterized as stable and high-yielding. 
By applying varying weights to both yield and stability 
indices, it was determined that the genotypes G9, G4, 
G22, G20, G19, G16, and G10 exhibited superior 
yields and stability compared to the other genotypes. 
Furthermore, when comparing traditional methods of 
stability analysis, such as AMMI and mixed models, 
it becomes evident that the application of these 
classical methods is not justifiable in instances where 
the homogeneity of variances across separate tests is 
not confirmed by various homogeneity of variances 

 

 

 

Figure 8. Rankings of 28 barley genotypes based on varying 
weights assigned to stability and yield performance.
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tests. Conversely, when the first and second principal 
components in the AMMI analysis or GGE Biplot 
account for a minimal percentage of the GEI, the 
utilization of these two methods is not warranted. In 
such cases, it is advisable to employ methodologies 
that incorporate all significant principal components to 
effectively identify superior genotypes.
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