Differences in antioxidant, morphological and biochemical responses to drought stress in different cultivars of common bean (Phaseolus vulgaris L.)

Document Type: Research paper

Authors

1 Agronomy and Plant Breeding Department, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, P. O. Box: 56199-11367, Ardabil, Iran.

2 Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Abstract

Drought stress is the most common environmental stress that can significantly influence crop productivity. In this study, morphological and biochemical properties of 17 genotypes of common bean were evaluated under different levels of drought stress and the most sensitive and tolerant genotypes were identified using multivariate analysis. The results indicated that morphological and biochemical characteristics of common bean were significantly influenced by drought stress, genotype, and genotypes ×drought stress interaction. Principal component analysis summarized the 14 indices to four components which explained 85.71%, 84.52%, 85.86% and 84.94% of the total variation at control, moderate, severe and combined data, respectively. The correlation coefficients among most of the quantitative traits were statistically significant at all drought stress levels. A significant and positive correlation between chlorophyll and carotenoids with ascorbate peroxidase activity was observed at both moderate and severe drought stress conditions. These associations suggest that this enzyme plays an important role in ROS scavenging under drought stress. Clustering analysis grouped the genotypes into four divergent groups. ‌The genotype-by-trait biplot analysis indicated that genotypes 1 and 2 were the most drought-tolerant and genotypes 12 and 16 were the most drought-sensitive genotypes under both moderate and severe drought stress conditions.

Keywords


Acosta-Gallegos J. A. (1988). Selection of common bean (Phaseolus vulgaris L.) genotypes with enhanced drought tolerance and biological nitrogen fixation. PhD thesis, Michigan State University, East Lansing, MI.

Ali F., Kanwal N., Ahsan M., Ali Q., Bibi I., and Niazi N. K. (2015). Multivariate analysis of grain yield and its attributing traits in different maize hybrids grown under heat and drought stress. Scientifica, 2015: 1-6.

Andrade M. I., Naico A., Ricardo J., Eyzaguirre R., Makunde G. S., Ortiz R., and Grüneberg W. J. (2016). Genotype × environment interaction and selection for drought adaptation in sweetpotato (Ipomoea batatas [L.] Lam.) in Mozambique. Euphytica, 209(1): 261-280.

Arnon D. I. (1994). Copper enzymes in isolated chloroplasts, polyphenol-oxidase in Beta vulgarisPlant Physiology, 24: 1–150.

Beebe S., Gomez A. V., and Renfigo J. (2000). Research on trace minerals in the common bean. Food and Nutrition Bulletin, 21:387–391.

Bohnert H. R., Nelson D. E., and Jensen R. G. (1995). Adaptations to environmental stresses. Plant Cell, 7: 1099-1111. 

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.

Cakmak I., and Horst W. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tip of soybean (Glycine max). Plant Physiology, 83: 463–468.

Chaves M. M., Maroco J. P., and Pereira J. S. (2003). Understanding plant responses to drought from genes to the whole plant. Functional Plant Biology, 30(3): 239–264.

Cirilo A. G., Dardanelli J., Balzarini M., Andrade F. H., Cantarero M., Luque S., and Pedrol H. M. (2009). Morpho physiological traits associated with maize crop adaptations to environments differing in nitrogen availability. Field Crops Research, 113(2):116–124.

Colmenero-Flores J. M., Campos F., Garciarrubio A., and Covarrubias A. A. (1997). Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein. Plant Molecular Biology, 35: 393–405.

Darkwa K., Ambachew D., Mohammed H., Asfaw A., and Blair M. W. (2016). Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. Crop Journal, 4: 367 – 376.

Denby K., and Gehring C. (2005). Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in arabidopsis. Trends in Biotechnolgy,23(11), 547–552. 

Desclaux D., Huynh T., and Roumet P. (2000). Identification of soybean plant characteristics that indicate the timing of drought stress. Crop science, 40: 716–722.

Drikvand R., Doosty B., and Hosseinpour T. (2012). Response of rainfed wheat genotypes to drought stress using drought tolerance indices. Journal of Agricultural Science, 4(7):126-131.

El-Tohamy W. A., Schnitzler W. H., El-Behairy U., and Singer S. M. (1999). Effect of long-term drought stress on growth and yield of bean plants (Phaseolus vulgaris L.). Journal of Applied Botany, 73: 173-177.

Eslami Z. (2012). Biochemical markers and grain yield of beans under drought stress conditions. MSc thesis, Shiraz University, Shiraz.

Farooq M., Bramley H., Palta J. A., and Siddique K. H. M.(2011). Heat stress in wheat during reproductive and grain filling phases. Critical Reviews in Plant Sciences, 30:491–507.

Farooq M., Basra S. M. A., Wahid A., Ahmad N., and Saleem B. A. (2009a). Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. Journal of Agronomy and Crop Science, 195: 237–246.

Farooq M., Hussain M., Wahid A., and Siddique K. H. M. (2012). Drought stress in plants: An overview, In R. Aroca (ed), Plant Responses to Drought Stress from Morphological to Molecular Features, Germany: Springer-Verlag, 1–36.

Farooq M., Wahid A., Ito O., Lee D. J., and Siddique K. H. M. (2009b). Advances in drought resistance of rice. Critical Reviews in Plant Sciences, 28: 199–217.

Flexas J., Bota J., Loreto F., Cornic G., and Sharkey T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology,6(3): 269–279.

Greenacre M. (2010). Biplots in Practice (first ed). BBVA Foundation, Spain: Madrid.

Ingram J., and Bartels D. (1996). The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47:377-403.

Gautier H., Guichard S., and Tchamitchian M. (2001). Modulation of competition between fruits and leaves by flower pruning and water fogging, and consequences on tomato leaf and fruit growth. Annals of Botany , 88: 645-652.

Ishitani M., Nakamura T., Han S. Y., and Takebe T. (1995). Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Molecular Biology, 27:307–315.

Juliana C. M., Moda-Cirino V., Fonseca N. S., Faria R. T., and Destro D. (2001). Response of common bean cultivars and lines to water stress. Crop Breeding and Appleid Biotechnology, 4: 363-372.

Kholova J., Hash C. T., Cova M. K., and Vadez V. (2011). Does a terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pearl millet exposed to drought?. Environmental and Experimental Botany, 71: 99–106.

Kiyosue T., Yamaguchi-Shinozaki K., and Shinozaki K. (1994). Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thalianaPlant and Cell Physiology, 35: 225–231.

Koizumi, M., Yamaguchi-Shinozaki K., Tsuji H., and K. Shinozaki. (1993). Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thalianaGene, 129:175–182.

Laffray D., and Louguet P. (1990). Stomatal responses and drought resistance. Bulletin de la Société botanique de France, 137(1):47-60.

Lambers H., Chapin I. I. I., Stuart F., and Thijs L. (2008). Plant physiological ecology, Springer Publisher, New York.

Leilah A. A., and Al-Khateeb S. A. (2005). Statistical analysis of wheat yield under drought conditions. Journal of Arid Environments, 61: 483–496.

Lisse T., Bartels D., Kalbitzer H. R., and Jaenicke R. (1996). The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plant agineum displays no defined three dimensional structure in its native state. Biological Chemistry, 377: 555–561.

Mc Donald A. J. S., and Davies W. J. (1996). Keeping in touch: responses of the whole plant to deficits in water and nitrogen supply. Advanced in Botanical Research, 22: 229–300.

Martínez J. P., Silva H., Ledent J. F., and Pinto M. (2007). Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European Journal of Agronomy, 26: 30–38.

McCree K. J. (1986). Whole-plant carbon balance during osmotic adjustment to drought and salinity stress. Australian Journal of Plant Physiology, 13: 33–43.

Mishra V., and Cherkauer K. A. (2010). Retrospective droughts in the crop growing season: implications to corn and soybean yield in the Midwestern United States. Agricultural and Forest Meterology, 150:1030–1045.

Nakano Y., and Asada K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867-880.

Naseh-ghafoori I., Bihamta M., Zali A., Afzali mohamadabadi M., and Dori H. (2010). Effect of drought stress on yield and yield components and determination of the best drought stress index in common bean (Phaseolus vulgaris L.). International Journal of Plant Production, 17(4): 71-89.

Neslihan-Ozturk Z., Talam´e1V., Deyholos M., Michalowski C. B., Galbraith D. W., Gozukirmizi N., Tuberosa R., and Bohnert H. J. (2002). Monitoring large-scale changes in transcript abundance in drought- and salt stressed barley. Plant Molecular Biology, 48: 551-573.

Niu X., Bressan R.A., Hasegawa P.M., and Pardo J.M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiology, 109: 735–742.

Pugnaire F. I., Serrano L., and Pardos J. (1999). Constraints by Water Stress on Plant Growth. Plant Crop Stress Handbook. (second ed). USDA: Washington, DC. CRC press.

Ribas-Carbo M., Taylor N. L., Giles L., Busquets S., Finnegan P. M., Day D. A., Lambers H., Medrano H., Berry J. A., and Flexas J. (2005). Effects of water stress on respiration in soybean leaves. Plant Physiology, 139(1): 466–473. 

Ramalho M. A. P., Santos J. B., and Zimmermann M. J. O. (1993). Genética quantitativa em plantas autógamas: aplicações ao melhoramento de feijoeiro. UFG. Goiânia. 271p.

Rizhsky L., Liang H., and Mittler R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 130(3): 1143–1151. 

Rosales M. A., Ocampo E., Rodríguez-Valentín R., Olvera-Carrillo Y., Acosta-Gallegos J., and Covarrubias A. A. (2012). Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant physiology and Biochemistry, 56: 24-34.

Seki M., Kameiy A., Yamaguchi-Shinozaki K., and Shinozaki K. (2003). Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology, 14:194–199.

Shafiei M., Bihamta M., Khiyalparast F., and Naghavi M. (2013).Comparison of some genotypes of common bean (Phaseolus vulgaris L.) in terms of drought tolerance by stress assessment indices. Iranian Journal of Field Crop Science, 44(1): 95-107.

Singh P. S., Teran H., Munoz C. G., and Takegami J. C. (1999). Two cycles of recurrent selection for seed yield in common bean. Crop Science, 39: 391–397.

Smirnoff N., and Cumbes Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes, Phytochemistry. 28: 1057-1060.

Yordanov  I., Velikova V., and Tsonev T. (2003). Plant responses to drought and stress tolerance. Bulgarian  Journal of Plant Physiology, 187–206.

Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53:247–73.