Effects of zeatin riboside, mannitol and heat stress on eggplantn (Solanum melongena L.) anther culture

Document Type: Research paper

Authors

1 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box: 14115336, Tehran, Iran.

2 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Malayer, Iran.

Abstract

In this research, the effects of zeatin riboside (0.6, 0.8, 1, 1.2 and 1.4 mg l-1), duration of heat stress of 35 °C (6, 8, 10 and 12 days) and mannitol (0, 10, 20, 30 and 40 mg l-1) on anther culture of four eggplant cultivars were investigated in independent experiments. These experiments were performed according to a factorial arrangement in a randomized complete blocks design layout. The results showed significant interaction effects between the cultivars and treatments. The highest percentage of embryo-derived plantlets (25%) was obtained in cultivar Chantal using 1 mg l-1 zeatin riboside and 8 days of the heat stress. The results also indicated that the use of 10 mg l-1 mannitol had the highest embryo-derived plantlets (66.6%) in cultivar Chantal. In cultivars Hadrian and Faselis, the ploidy levels of all regenerated plants from anther culture (10 and 21 plants, respectively) were determined through flow cytometry and it was found that 60% and 57.1% of the tested plants were haploid, respectively. In cultivars Chantale and Valentina, 30 regenerated plants were selected for determining their ploidy levels and the results showed that 40.2% and 51.5% of the plants were haploid, respectively.

Keywords


Bal U., Ellialtioglu S., and Abak K. (2009). Induction of symmetrical nucleus division and multi-nucleate structures in microspores of eggplant (Solanumm elongena L.) cultured in vitro. Scientia Agricola, 66(4): 535–539.

Alpsoy H. C., and Seniz V. (2004). Researches on the in vitro androgenesis and obtaining haploid plants in some eggplant genotypes. Proc IIIrd Balkan Symp on Veg and Potatoes. Acta Horticulturae, 729: 137–141.

Binarova P., Hause G., Cenklová V., Cordewener J. H. G., and Campagne M. M. L. (1997). A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sexual Plant Reproduction, 10(4): 200–208.

Datta S. K. (2005). Androgenic haploids: factors controlling development and its application in crop improvement. Current Science- Bangalore, 89(11): 1870-1878.

Dharmegowda M. V. (1977). Genic analysis of yield and yield components in brinjal. Mysore Journal Agricultural Science, 11: 426.

Doležel J., and Bartoš J. (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany, 95: 99–110.

Dumas de Vaulx R., and Chambonnet D. (1982). Culture in vitro d’anthères d’aubergine (Solanumm elongena L.): stimulation de la production de plantes au moyen de traitements à+ 35°C associés à de faibles teneurs en substances de croissance. Agronomie, 2: 982-988.

Dumas de Vaulx R., Chambonnet D., and Pochard E. (1981). In vitro culture of pepper (Capsicum annuum L.) anthers: high rate plant production from different genotypes by+ 35 degrees C treatments [haploidy, temperature]. Agronomie, 1: 859–864.

Dunwell J. M. (2010). Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal, 8(4): 377–424.

Ellialtıoğlu Ş., Kaplan F., and Abak K. (2001). The effect of carrot extract and activated charcoal on the androgenesis of pepper. In: Abak K., Büyükalaca S., Dasgan, Y., editors. Proceedings of XIth EUCARPIA Meeting on Genetics and Breeding of Capsicum & Eggplant, 9–13 April, Antalya, Turkey, Adana: Eucarpia, 142–145.

Eshaghi Z. C., Abdollahi M. R., Moosavi S. S., Deljou A., and Seguí-Simarro, J. M. (2015). Induction of androgenesis and production of haploid embryos in anther cultures of borage (Borago officinalis L.). Plant Cell, Tissue and Organ Culture, 122(2): 321–329.

FAOSTAT (2015). Available on : http://faostat.fao.org/. Last accessed 2015/12/20.

Ferrie A. M. R, and Möllers C. (2011). Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell, Tissue and Organ Culture, 104(3): 375–386.

Ferrie A. M. R., and Caswell K. L. (2011). Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell, Tissue and Organ Culture, 104(3): 301–309.

Ferrie A. M. R., and Keller W. A. (2007). Optimization of methods for using polyethylene glycol as a non-permeating osmoticum for the induction of microspore embryogenesis in the Brassicaceae. In Vitro Cellular and Developmental Biology-Plant, 43(4): 348-355.

Gémes Juhasz A., Venczel G., Sagi Z. S., Gajdos L., Kristof Z.,Vagi P., and Zatyko L. (2006). Production of doubled haploid breeding lines in case of paprika, spice paprika, eggplant, cucumber, zucchini and onion. In: Acta Horticulturae. International Society for Horticultural Science (ISHS) Leuven Belgium, 845–854.

Germanà M. A. (2011). Anther culture for haploid and doubled haploid production. Plant Cell, Tissue and Organ Culture, 104: 283–300.

Germana M. A. (2006). Doubled haploid production in fruit crops. Plant Cell, Tissue and Organ Culture, 86(2): 131–146.

Hoque A., Hossain M., Alam S., Arima S., and Islam R. (2007). Adventitious shoot regeneration from immature embryo explant obtained from Female×Female Momordica dioica. Plant Tissue Culture and Biotechnology, 17(1): 29–36.

Ilić-Grubor K., Attree S. M., and Fowke L. C. (1998). Induction of microspore-derived embryos of Brassica napus L. with polyethylene glycol (PEG) as osmoticum in a low sucrose medium. Plant Cell Reports, 17(5): 329-333s.

Jäättelä M., Wissing D., Kokholm K., Kallunki T., and Egeblad M. (1998). Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. The EMBO Journal Press, 17(21): 6124–6134.

Karakullukçu Ş., and Abak K. (1992). The response of some eggplant cultivars to anther culture. Ankara Üniversitesi Ziraat Fak Yıllığı, 42: 7–12.

Kaur J., Patel J. A., Patel M. J., Bhanvadia A. S., and Acharya R. R. (2001). Heterosis for fruit yield and its components in brinjal (Solanum melongena L.). Capsicum Eggplant Newsl, 20: 102-105.

Kaushal L., Balachandran S. M., Ulaganathan K., and Shenoy V. (2014). Effect of culture media on improving anther culture response of rice (Oryza sativa L.). International Journal of Agriculture Innovations and Research, 3(1): 218-224.

Lakshman Naik M., and Ravali B. (2016). Plant regeneration in eggplant (Solanum melongena L.), A review. International Journal of Plant, Animal and Environment Sciences, 6(2): 121-127.

‏Lester R. N., and Hasan S. M. Z. (1991). Origin and domestication of the brinjal eggplant, Solanum melongena, from S. incanum, in Africa and Asia. Taxonomy, Chemistry, Evolution, Solanaceae III., Royal Botanical Gardens Kew, London, 369–387.

Loureiro J., Rodriguez E., Doležel J., and Santos C. (2007). Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Annals of Botany, 100 (4): 875-888.

Murashige T., and Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology, 15: 473–497.

‏Nover L., Kranz E., and Scharf K. D. (1982). Growth cycle of suspension cultures of Lycopersicon esculentum and L. peruvianum. Biochemie und Physiologie der Pflanzen, 177(6): 483-499.

Parra-Vega V., Renau-Morata B., Sifres A., and Segu-Simarro J. M. (2013). Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell, Tissue and Organ Culture, 112: 353–360.

Quagliotti L. (1979). Floral biology of Capsicum and Solanumm elongena. In: J.C. Hawkes, R.N. Lester and A.D. Skelding (Eds.), New York, The Biology and Taxomony of Solanaceae, Academic Press Inc., 399-419.

Raina S. K., and Iyer R. D. (1973). Differentiation of diploid plants from pollen callus in anther cultures of Solanum melongena L. Zeitschrift Fur Pflanzenzuchtung, 70: 275–280.

Rotino G. L. (1996). Haploidy in eggplant. In Vitro Haploid Production In Higher Plants. Kluwer Academic Publishers, Dordrecht, Netherlands, 115–141.

Rotino G. L., Falavigna A., and Restaino F. (1987). Production of anther-derived plantlets of eggplant. Capsicum Newsletter, 6: 89–90.

Salas P., Prohens J., and Seguí-Simarro J. M. (2011). Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica, 182(2): 261–274.

Sanguineti M. C., Tuberosa R., and Conti S. (1990). Field evaluation of androgenetic lines of eggplant. Acta Horticulturae, 280: 177–182.

Seguí-Simarro J. M., Corral-Martínez P., Parra-Vega V., and González-García B. (2011). Androgenesis in recalcitrant solanaceous crops. Plant Cell Reports, 30: 765–780.

Shivaraj G., and Rao S. (2011). Rapid and efficient plant regeneration of eggplant (Solanum melongena L.) from cotyledonary leaf explants. Indian Journal of Biotechnology, 10: 125-129.

Singh K., Sidhu A. S., and Kumar A. (2012). Heterosis for fruit yield and its components in brinjal (Solanum melongena L.). Journal of Horticultural Science, 7(2): 142-144.

Smýkal P. (2000). Pollen embryogenesis - the stress mediated switch from gametophytic to sporophytic development. Current status and future prospects. Biologia Plantarum, 43: 481–489.

Wang M., Van Bergen S., and Van Duijn B. (2000). Insights into a key developmental switch and its importance for efficient plant breeding. Plant Physiology, 124(2): 523–530.

Wehner T. C. (1999). Heterosis in vegetable crops, The genetics and exploitation of heterosis. American Society of Agronomy, Madison, 387–397.

Zheng M Y. (2003). Microspore culture in wheat (Triticum aestivum)–doubled haploid production via induced embryogenesis. Plant Cell, Tissue and Organ Culture, 73(3): 213-230.

Żur I., Dubas E., Krzewska M. and Janowiak F. (2015). Current insights into hormonal regulation of microspore embryogenesis. Plant Science, 6: 424.